Properties

Label 2-2072-1.1-c1-0-1
Degree $2$
Conductor $2072$
Sign $1$
Analytic cond. $16.5450$
Root an. cond. $4.06755$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 7-s − 3·9-s − 4·11-s − 4·13-s + 2·19-s + 11·25-s − 6·29-s + 2·31-s + 4·35-s − 37-s + 2·41-s + 8·43-s + 12·45-s + 4·47-s + 49-s − 6·53-s + 16·55-s + 6·59-s + 3·63-s + 16·65-s − 4·67-s − 8·71-s + 10·73-s + 4·77-s − 8·79-s + 9·81-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.377·7-s − 9-s − 1.20·11-s − 1.10·13-s + 0.458·19-s + 11/5·25-s − 1.11·29-s + 0.359·31-s + 0.676·35-s − 0.164·37-s + 0.312·41-s + 1.21·43-s + 1.78·45-s + 0.583·47-s + 1/7·49-s − 0.824·53-s + 2.15·55-s + 0.781·59-s + 0.377·63-s + 1.98·65-s − 0.488·67-s − 0.949·71-s + 1.17·73-s + 0.455·77-s − 0.900·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2072 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2072\)    =    \(2^{3} \cdot 7 \cdot 37\)
Sign: $1$
Analytic conductor: \(16.5450\)
Root analytic conductor: \(4.06755\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2072,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4188355943\)
\(L(\frac12)\) \(\approx\) \(0.4188355943\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
37 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.962038555811940208667092331639, −8.198061734199791289115955710221, −7.57167178089628656871075734507, −7.13788706896658819557844494948, −5.83193960073228849985985080649, −5.05203485694549250692665439486, −4.18437962166128173929044575331, −3.21090636476466589268085715680, −2.56476155909250453696337944857, −0.39765703754171760008269461983, 0.39765703754171760008269461983, 2.56476155909250453696337944857, 3.21090636476466589268085715680, 4.18437962166128173929044575331, 5.05203485694549250692665439486, 5.83193960073228849985985080649, 7.13788706896658819557844494948, 7.57167178089628656871075734507, 8.198061734199791289115955710221, 8.962038555811940208667092331639

Graph of the $Z$-function along the critical line