Properties

Label 2-20570-1.1-c1-0-11
Degree $2$
Conductor $20570$
Sign $-1$
Analytic cond. $164.252$
Root an. cond. $12.8160$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 3·9-s − 10-s + 6·13-s + 16-s − 17-s − 3·18-s − 2·19-s − 20-s − 2·23-s + 25-s + 6·26-s − 2·29-s + 4·31-s + 32-s − 34-s − 3·36-s − 2·37-s − 2·38-s − 40-s − 12·41-s − 8·43-s + 3·45-s − 2·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 9-s − 0.316·10-s + 1.66·13-s + 1/4·16-s − 0.242·17-s − 0.707·18-s − 0.458·19-s − 0.223·20-s − 0.417·23-s + 1/5·25-s + 1.17·26-s − 0.371·29-s + 0.718·31-s + 0.176·32-s − 0.171·34-s − 1/2·36-s − 0.328·37-s − 0.324·38-s − 0.158·40-s − 1.87·41-s − 1.21·43-s + 0.447·45-s − 0.294·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20570\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(164.252\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20570,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.89491891263591, −15.20259437300718, −14.89628192910194, −14.22376797666076, −13.59567842188993, −13.36533897841929, −12.71475689195459, −11.88406286023888, −11.60846136570883, −11.16763062433318, −10.47377762159308, −10.02624207790389, −8.940181831496999, −8.510329943328897, −8.186339307255608, −7.320190224402118, −6.474208501373484, −6.298284115019753, −5.413043769019309, −4.989578367367883, −3.916266249003012, −3.711236572604576, −2.914751283410063, −2.110665324412919, −1.183059895390515, 0, 1.183059895390515, 2.110665324412919, 2.914751283410063, 3.711236572604576, 3.916266249003012, 4.989578367367883, 5.413043769019309, 6.298284115019753, 6.474208501373484, 7.320190224402118, 8.186339307255608, 8.510329943328897, 8.940181831496999, 10.02624207790389, 10.47377762159308, 11.16763062433318, 11.60846136570883, 11.88406286023888, 12.71475689195459, 13.36533897841929, 13.59567842188993, 14.22376797666076, 14.89628192910194, 15.20259437300718, 15.89491891263591

Graph of the $Z$-function along the critical line