Properties

Label 2-2057-1.1-c1-0-115
Degree $2$
Conductor $2057$
Sign $-1$
Analytic cond. $16.4252$
Root an. cond. $4.05280$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·4-s − 3·7-s + 9-s − 4·12-s + 6·13-s + 4·16-s − 17-s − 6·19-s − 6·21-s + 6·23-s − 5·25-s − 4·27-s + 6·28-s − 9·29-s + 4·31-s − 2·36-s − 2·37-s + 12·39-s − 9·41-s − 6·43-s + 3·47-s + 8·48-s + 2·49-s − 2·51-s − 12·52-s − 3·53-s + ⋯
L(s)  = 1  + 1.15·3-s − 4-s − 1.13·7-s + 1/3·9-s − 1.15·12-s + 1.66·13-s + 16-s − 0.242·17-s − 1.37·19-s − 1.30·21-s + 1.25·23-s − 25-s − 0.769·27-s + 1.13·28-s − 1.67·29-s + 0.718·31-s − 1/3·36-s − 0.328·37-s + 1.92·39-s − 1.40·41-s − 0.914·43-s + 0.437·47-s + 1.15·48-s + 2/7·49-s − 0.280·51-s − 1.66·52-s − 0.412·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(16.4252\)
Root analytic conductor: \(4.05280\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2057,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad11 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.614284438299390107896283197214, −8.453857897317752248942736570126, −7.31772661569686145839950009537, −6.32422609820024788903427802150, −5.63552611516237010198355246364, −4.33690474543179484375177890543, −3.60796211674639736885273377886, −3.09552236851761980264613157620, −1.70245103388878777142529973135, 0, 1.70245103388878777142529973135, 3.09552236851761980264613157620, 3.60796211674639736885273377886, 4.33690474543179484375177890543, 5.63552611516237010198355246364, 6.32422609820024788903427802150, 7.31772661569686145839950009537, 8.453857897317752248942736570126, 8.614284438299390107896283197214

Graph of the $Z$-function along the critical line