Properties

Label 2-20475-1.1-c1-0-28
Degree $2$
Conductor $20475$
Sign $-1$
Analytic cond. $163.493$
Root an. cond. $12.7864$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 7-s − 3·8-s − 4·11-s − 13-s + 14-s − 16-s − 2·17-s + 4·19-s − 4·22-s + 4·23-s − 26-s − 28-s − 6·29-s + 8·31-s + 5·32-s − 2·34-s + 2·37-s + 4·38-s − 2·41-s + 4·43-s + 4·44-s + 4·46-s − 12·47-s + 49-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.377·7-s − 1.06·8-s − 1.20·11-s − 0.277·13-s + 0.267·14-s − 1/4·16-s − 0.485·17-s + 0.917·19-s − 0.852·22-s + 0.834·23-s − 0.196·26-s − 0.188·28-s − 1.11·29-s + 1.43·31-s + 0.883·32-s − 0.342·34-s + 0.328·37-s + 0.648·38-s − 0.312·41-s + 0.609·43-s + 0.603·44-s + 0.589·46-s − 1.75·47-s + 1/7·49-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20475\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(163.493\)
Root analytic conductor: \(12.7864\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20475,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.86095113559569, −15.19388486337353, −14.76290606847525, −14.29248504174000, −13.58022117371590, −13.22735018011688, −12.84624594006897, −12.20417191674873, −11.43218240969709, −11.25529922306962, −10.24775478493962, −9.875251752305908, −9.213774903209144, −8.576994623616632, −8.032452424033314, −7.445121409096356, −6.722977981169934, −5.944299433512188, −5.319714249244781, −4.908697544279429, −4.379168736026353, −3.487146050011393, −2.906195188549689, −2.208460427809642, −1.010230044926527, 0, 1.010230044926527, 2.208460427809642, 2.906195188549689, 3.487146050011393, 4.379168736026353, 4.908697544279429, 5.319714249244781, 5.944299433512188, 6.722977981169934, 7.445121409096356, 8.032452424033314, 8.576994623616632, 9.213774903209144, 9.875251752305908, 10.24775478493962, 11.25529922306962, 11.43218240969709, 12.20417191674873, 12.84624594006897, 13.22735018011688, 13.58022117371590, 14.29248504174000, 14.76290606847525, 15.19388486337353, 15.86095113559569

Graph of the $Z$-function along the critical line