Properties

Label 2-20475-1.1-c1-0-30
Degree $2$
Conductor $20475$
Sign $-1$
Analytic cond. $163.493$
Root an. cond. $12.7864$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 7-s + 3·8-s + 13-s − 14-s − 16-s + 2·17-s − 4·19-s + 6·23-s − 26-s − 28-s + 4·29-s − 5·32-s − 2·34-s + 10·37-s + 4·38-s − 12·41-s + 4·43-s − 6·46-s − 10·47-s + 49-s − 52-s − 12·53-s + 3·56-s − 4·58-s + 14·59-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.377·7-s + 1.06·8-s + 0.277·13-s − 0.267·14-s − 1/4·16-s + 0.485·17-s − 0.917·19-s + 1.25·23-s − 0.196·26-s − 0.188·28-s + 0.742·29-s − 0.883·32-s − 0.342·34-s + 1.64·37-s + 0.648·38-s − 1.87·41-s + 0.609·43-s − 0.884·46-s − 1.45·47-s + 1/7·49-s − 0.138·52-s − 1.64·53-s + 0.400·56-s − 0.525·58-s + 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20475\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(163.493\)
Root analytic conductor: \(12.7864\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20475,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.10348354349758, −15.33573977090206, −14.69250581372500, −14.44601531070245, −13.66784431437529, −13.11010802636398, −12.83315144118011, −11.99406816116850, −11.34305401691147, −10.86992811006375, −10.26056087050313, −9.798796528951929, −9.129067200444882, −8.641139430410505, −8.110501842696626, −7.669357232149782, −6.855057617688869, −6.309656616548800, −5.419978465546264, −4.799021131302345, −4.341759016062673, −3.483862005169213, −2.707322941843403, −1.650440371194251, −1.054638906644435, 0, 1.054638906644435, 1.650440371194251, 2.707322941843403, 3.483862005169213, 4.341759016062673, 4.799021131302345, 5.419978465546264, 6.309656616548800, 6.855057617688869, 7.669357232149782, 8.110501842696626, 8.641139430410505, 9.129067200444882, 9.798796528951929, 10.26056087050313, 10.86992811006375, 11.34305401691147, 11.99406816116850, 12.83315144118011, 13.11010802636398, 13.66784431437529, 14.44601531070245, 14.69250581372500, 15.33573977090206, 16.10348354349758

Graph of the $Z$-function along the critical line