Properties

Label 2-1980-1.1-c1-0-12
Degree $2$
Conductor $1980$
Sign $-1$
Analytic cond. $15.8103$
Root an. cond. $3.97622$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s + 11-s − 4·13-s + 6·17-s + 2·19-s + 25-s − 4·31-s − 4·35-s − 10·37-s − 4·43-s − 12·47-s + 9·49-s − 6·53-s + 55-s − 12·59-s − 10·61-s − 4·65-s − 4·67-s + 8·73-s − 4·77-s − 10·79-s + 6·83-s + 6·85-s + 6·89-s + 16·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s + 0.301·11-s − 1.10·13-s + 1.45·17-s + 0.458·19-s + 1/5·25-s − 0.718·31-s − 0.676·35-s − 1.64·37-s − 0.609·43-s − 1.75·47-s + 9/7·49-s − 0.824·53-s + 0.134·55-s − 1.56·59-s − 1.28·61-s − 0.496·65-s − 0.488·67-s + 0.936·73-s − 0.455·77-s − 1.12·79-s + 0.658·83-s + 0.650·85-s + 0.635·89-s + 1.67·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1980\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(15.8103\)
Root analytic conductor: \(3.97622\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1980,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.038549791749297259415708863685, −7.896053225312047578470722141565, −7.12289288365075576894664921496, −6.43361771992124639760583933441, −5.62904260526368110524318216143, −4.84063087230686996605693150347, −3.46288274003084083808791132864, −3.01690060177596489931621497136, −1.63354959955777809280108165155, 0, 1.63354959955777809280108165155, 3.01690060177596489931621497136, 3.46288274003084083808791132864, 4.84063087230686996605693150347, 5.62904260526368110524318216143, 6.43361771992124639760583933441, 7.12289288365075576894664921496, 7.896053225312047578470722141565, 9.038549791749297259415708863685

Graph of the $Z$-function along the critical line