Properties

Label 2-19536-1.1-c1-0-31
Degree $2$
Conductor $19536$
Sign $1$
Analytic cond. $155.995$
Root an. cond. $12.4898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 4·7-s + 9-s + 11-s − 2·13-s − 2·15-s − 6·17-s − 8·19-s − 4·21-s − 25-s + 27-s − 2·29-s + 33-s + 8·35-s + 37-s − 2·39-s − 6·41-s − 8·43-s − 2·45-s − 12·47-s + 9·49-s − 6·51-s − 6·53-s − 2·55-s − 8·57-s − 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s − 0.516·15-s − 1.45·17-s − 1.83·19-s − 0.872·21-s − 1/5·25-s + 0.192·27-s − 0.371·29-s + 0.174·33-s + 1.35·35-s + 0.164·37-s − 0.320·39-s − 0.937·41-s − 1.21·43-s − 0.298·45-s − 1.75·47-s + 9/7·49-s − 0.840·51-s − 0.824·53-s − 0.269·55-s − 1.05·57-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19536\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(155.995\)
Root analytic conductor: \(12.4898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 19536,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.11757890106341, −15.58779675477190, −15.17501055660213, −14.84298838820907, −14.05052015372959, −13.30329651739275, −13.01577199254301, −12.56460614597038, −11.89571726317401, −11.29490814121481, −10.69204083749421, −9.984871709662782, −9.562314504696403, −8.886444149853542, −8.429005116054379, −7.838322017755982, −7.012869680447267, −6.558620654247160, −6.245888922560899, −5.026171819880218, −4.357832404463928, −3.807361351614071, −3.241577334098866, −2.472518349994483, −1.744856222563909, 0, 0, 1.744856222563909, 2.472518349994483, 3.241577334098866, 3.807361351614071, 4.357832404463928, 5.026171819880218, 6.245888922560899, 6.558620654247160, 7.012869680447267, 7.838322017755982, 8.429005116054379, 8.886444149853542, 9.562314504696403, 9.984871709662782, 10.69204083749421, 11.29490814121481, 11.89571726317401, 12.56460614597038, 13.01577199254301, 13.30329651739275, 14.05052015372959, 14.84298838820907, 15.17501055660213, 15.58779675477190, 16.11757890106341

Graph of the $Z$-function along the critical line