Properties

Label 2-194040-1.1-c1-0-50
Degree $2$
Conductor $194040$
Sign $1$
Analytic cond. $1549.41$
Root an. cond. $39.3626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 11-s + 2·13-s + 2·17-s + 4·19-s + 25-s + 2·29-s + 8·31-s − 2·37-s − 6·41-s + 4·43-s + 8·47-s + 10·53-s − 55-s − 4·59-s + 2·61-s + 2·65-s − 12·67-s − 8·71-s + 14·73-s + 8·79-s + 12·83-s + 2·85-s − 6·89-s + 4·95-s + 14·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.301·11-s + 0.554·13-s + 0.485·17-s + 0.917·19-s + 1/5·25-s + 0.371·29-s + 1.43·31-s − 0.328·37-s − 0.937·41-s + 0.609·43-s + 1.16·47-s + 1.37·53-s − 0.134·55-s − 0.520·59-s + 0.256·61-s + 0.248·65-s − 1.46·67-s − 0.949·71-s + 1.63·73-s + 0.900·79-s + 1.31·83-s + 0.216·85-s − 0.635·89-s + 0.410·95-s + 1.42·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 194040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(194040\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1549.41\)
Root analytic conductor: \(39.3626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 194040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.039915864\)
\(L(\frac12)\) \(\approx\) \(4.039915864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23444722834823, −12.53693548130626, −12.17578869977361, −11.71125370505957, −11.29449721533574, −10.56691172990651, −10.25311557825354, −9.961510639465076, −9.217328198850361, −8.885014941186100, −8.379231015061609, −7.787353333691583, −7.382962852042773, −6.838219927017832, −6.162594261533585, −5.908723903964543, −5.267049251974072, −4.804839910806948, −4.260971533134908, −3.441744563702931, −3.177950891016350, −2.411006956581000, −1.899085854403994, −1.023082922036512, −0.6765333479311073, 0.6765333479311073, 1.023082922036512, 1.899085854403994, 2.411006956581000, 3.177950891016350, 3.441744563702931, 4.260971533134908, 4.804839910806948, 5.267049251974072, 5.908723903964543, 6.162594261533585, 6.838219927017832, 7.382962852042773, 7.787353333691583, 8.379231015061609, 8.885014941186100, 9.217328198850361, 9.961510639465076, 10.25311557825354, 10.56691172990651, 11.29449721533574, 11.71125370505957, 12.17578869977361, 12.53693548130626, 13.23444722834823

Graph of the $Z$-function along the critical line