Properties

Label 2-193550-1.1-c1-0-48
Degree $2$
Conductor $193550$
Sign $-1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 3·6-s + 8-s + 6·9-s − 6·11-s − 3·12-s − 4·13-s + 16-s + 6·18-s − 6·22-s + 4·23-s − 3·24-s − 4·26-s − 9·27-s + 6·29-s + 7·31-s + 32-s + 18·33-s + 6·36-s + 9·37-s + 12·39-s − 43-s − 6·44-s + 4·46-s − 6·47-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.22·6-s + 0.353·8-s + 2·9-s − 1.80·11-s − 0.866·12-s − 1.10·13-s + 1/4·16-s + 1.41·18-s − 1.27·22-s + 0.834·23-s − 0.612·24-s − 0.784·26-s − 1.73·27-s + 1.11·29-s + 1.25·31-s + 0.176·32-s + 3.13·33-s + 36-s + 1.47·37-s + 1.92·39-s − 0.152·43-s − 0.904·44-s + 0.589·46-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12956878826331, −12.79453654124633, −12.34596824653495, −12.03202047020958, −11.45012866304703, −11.09055472849030, −10.63976639090314, −10.16205963627693, −9.918817577480021, −9.306078884347050, −8.297893787147313, −7.937268709598996, −7.419615017975602, −6.869184625861738, −6.491745699387706, −5.928161228311178, −5.438528473876567, −5.032620147028643, −4.612409560552157, −4.399304280474814, −3.320880823533649, −2.698286764121584, −2.361988973380329, −1.347920622118070, −0.6885919980420858, 0, 0.6885919980420858, 1.347920622118070, 2.361988973380329, 2.698286764121584, 3.320880823533649, 4.399304280474814, 4.612409560552157, 5.032620147028643, 5.438528473876567, 5.928161228311178, 6.491745699387706, 6.869184625861738, 7.419615017975602, 7.937268709598996, 8.297893787147313, 9.306078884347050, 9.918817577480021, 10.16205963627693, 10.63976639090314, 11.09055472849030, 11.45012866304703, 12.03202047020958, 12.34596824653495, 12.79453654124633, 13.12956878826331

Graph of the $Z$-function along the critical line