Properties

Label 2-19110-1.1-c1-0-13
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s + 9-s − 10-s + 2·11-s − 12-s + 13-s + 15-s + 16-s − 6·17-s + 18-s + 6·19-s − 20-s + 2·22-s + 4·23-s − 24-s + 25-s + 26-s − 27-s + 30-s − 4·31-s + 32-s − 2·33-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s − 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 1.37·19-s − 0.223·20-s + 0.426·22-s + 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s + 0.182·30-s − 0.718·31-s + 0.176·32-s − 0.348·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.701217783\)
\(L(\frac12)\) \(\approx\) \(2.701217783\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71565800047403, −15.08694858732491, −14.85256817826492, −13.87925587262438, −13.57264937226190, −13.00895137795315, −12.38397007995170, −11.80801944238474, −11.38829367908889, −11.01146763648968, −10.34373646747689, −9.572580902210137, −9.010827705481651, −8.343466253741832, −7.549281399298008, −6.910938950185541, −6.614737179567607, −5.810956490034926, −5.132026451557764, −4.678237085214887, −3.870332676467142, −3.409056423182881, −2.472977161855563, −1.555687883815118, −0.6522805155145664, 0.6522805155145664, 1.555687883815118, 2.472977161855563, 3.409056423182881, 3.870332676467142, 4.678237085214887, 5.132026451557764, 5.810956490034926, 6.614737179567607, 6.910938950185541, 7.549281399298008, 8.343466253741832, 9.010827705481651, 9.572580902210137, 10.34373646747689, 11.01146763648968, 11.38829367908889, 11.80801944238474, 12.38397007995170, 13.00895137795315, 13.57264937226190, 13.87925587262438, 14.85256817826492, 15.08694858732491, 15.71565800047403

Graph of the $Z$-function along the critical line