Properties

Label 19110.bs
Number of curves $2$
Conductor $19110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19110.bs have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19110.bs do not have complex multiplication.

Modular form 19110.2.a.bs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} + 2 q^{11} - q^{12} + q^{13} + q^{15} + q^{16} - 6 q^{17} + q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 19110.bs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19110.bs1 19110bu1 \([1, 1, 1, -113059661, 462640495043]\) \(1358496453776544375572161/78807337984327680\) \(9271604506518167224320\) \([2]\) \(3548160\) \(3.2781\) \(\Gamma_0(N)\)-optimal
19110.bs2 19110bu2 \([1, 1, 1, -106536781, 518379809219]\) \(-1136669439536177967564481/329089027143166617600\) \(-38716994954366409394022400\) \([2]\) \(7096320\) \(3.6247\)