Further refine search

Results (displaying matches 1-50 of 222) Next

Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass Coefficients Rank Torsion structure
19110.a1 19110a1 19110.a 19110a [1, 1, 0, 53287, -19722807] 1 []
19110.b1 19110c4 19110.b 19110c [1, 1, 0, -42756298, 107590373332] 0 [2]
19110.b2 19110c3 19110.b 19110c [1, 1, 0, -2615498, 1755140052] 0 [2]
19110.b3 19110c2 19110.b 19110c [1, 1, 0, -784123, -10387523] 0 [2]
19110.b4 19110c1 19110.b 19110c [1, 1, 0, 195877, -1175523] 0 [2]
19110.c1 19110b1 19110.c 19110b [1, 1, 0, -325728, 439459182] 1 []
19110.d1 19110m5 19110.d 19110m [1, 1, 0, -41761402, 103855143316] 1 [2]
19110.d2 19110m6 19110.d 19110m [1, 1, 0, -40130682, 112340431764] 1 [2]
19110.d3 19110m3 19110.d 19110m [1, 1, 0, -894667, -93657731] 1 [2]
19110.d4 19110m1 19110.d 19110m [1, 1, 0, -702832, -227083604] 1 [2]
19110.d5 19110m2 19110.d 19110m [1, 1, 0, -696462, -231393546] 1 [2]
19110.d6 19110m4 19110.d 19110m [1, 1, 0, 3411453, -728379819] 1 [2]
19110.e1 19110p3 19110.e 19110p [1, 1, 0, -16216549192, 494082084186496] 0 [4]
19110.e2 19110p2 19110.e 19110p [1, 1, 0, -6854789512, -212818772194496] 0 [2, 2]
19110.e3 19110p1 19110.e 19110p [1, 1, 0, -6805617032, -216099982943424] 0 [2]
19110.e4 19110p4 19110.e 19110p [1, 1, 0, 1720210488, -709721157194496] 0 [2]
19110.f1 19110k2 19110.f 19110k [1, 1, 0, -56032, 5272576] 1 []
19110.f2 19110k1 19110.f 19110k [1, 1, 0, 3503, 21589] 1 []
19110.g1 19110d1 19110.g 19110d [1, 1, 0, -11197, 553981] 1 []
19110.h1 19110h2 19110.h 19110h [1, 1, 0, -6291097677, 192005076018141] 1 [2]
19110.h2 19110h1 19110.h 19110h [1, 1, 0, -446597197, 2132451124189] 1 [2]
19110.i1 19110g2 19110.i 19110g [1, 1, 0, -136567, 19368469] 1 []
19110.i2 19110g1 19110.i 19110g [1, 1, 0, -1432, 34336] 1 []
19110.j1 19110e2 19110.j 19110e [1, 1, 0, -18267, -239931] 1 [2]
19110.j2 19110e1 19110.j 19110e [1, 1, 0, 4413, -26739] 1 [2]
19110.k1 19110f1 19110.k 19110f [1, 1, 0, -6052, -189986] 1 []
19110.k2 19110f2 19110.k 19110f [1, 1, 0, 29963, -557339] 1 []
19110.l1 19110i1 19110.l 19110i [1, 1, 0, -137, 561] 1 [2]
19110.l2 19110i2 19110.l 19110i [1, 1, 0, -67, 1219] 1 [2]
19110.m1 19110j8 19110.m 19110j [1, 1, 0, -111018247, 450114381109] 1 [2]
19110.m2 19110j7 19110.m 19110j [1, 1, 0, -48831367, -127237512779] 1 [2]
19110.m3 19110j4 19110.m 19110j [1, 1, 0, -48404332, -129640899716] 1 [2]
19110.m4 19110j6 19110.m 19110j [1, 1, 0, -7671367, 5454095221] 1 [2, 2]
19110.m5 19110j5 19110.m 19110j [1, 1, 0, -3369412, -1537423964] 1 [2]
19110.m6 19110j2 19110.m 19110j [1, 1, 0, -3025432, -2026357136] 1 [2, 2]
19110.m7 19110j1 19110.m 19110j [1, 1, 0, -167752, -39126464] 1 [2]
19110.m8 19110j3 19110.m 19110j [1, 1, 0, 1360313, 582407029] 1 [2]
19110.n1 19110o3 19110.n 19110o [1, 1, 0, -526187, 146352501] 0 [2]
19110.n2 19110o2 19110.n 19110o [1, 1, 0, -45987, 275661] 0 [2, 2]
19110.n3 19110o1 19110.n 19110o [1, 1, 0, -30307, -2035571] 0 [2]
19110.n4 19110o4 19110.n 19110o [1, 1, 0, 183333, 2431269] 0 [2]
19110.o1 19110n3 19110.o 19110n [1, 1, 0, -4239897, -3362090619] 0 [2]
19110.o2 19110n4 19110.o 19110n [1, 1, 0, -304217, -36070971] 0 [2]
19110.o3 19110n2 19110.o 19110n [1, 1, 0, -265017, -52605531] 0 [2, 2]
19110.o4 19110n1 19110.o 19110n [1, 1, 0, -14137, -1074779] 0 [2]
19110.p1 19110l3 19110.p 19110l [1, 1, 0, -2522202, 1540712916] 1 [2]
19110.p2 19110l4 19110.p 19110l [1, 1, 0, -2508482, 1558321164] 1 [2]
19110.p3 19110l1 19110.p 19110l [1, 1, 0, -37167, 1222929] 1 [2]
19110.p4 19110l2 19110.p 19110l [1, 1, 0, 130903, 9391131] 1 [2]
19110.q1 19110q1 19110.q 19110q [1, 1, 0, -4827, 123369] 0 [2]
Next

Download all search results for