Properties

Label 2-19074-1.1-c1-0-18
Degree $2$
Conductor $19074$
Sign $1$
Analytic cond. $152.306$
Root an. cond. $12.3412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 4·5-s − 6-s + 2·7-s + 8-s + 9-s + 4·10-s − 11-s − 12-s + 4·13-s + 2·14-s − 4·15-s + 16-s + 18-s + 4·20-s − 2·21-s − 22-s + 6·23-s − 24-s + 11·25-s + 4·26-s − 27-s + 2·28-s − 10·29-s − 4·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.78·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s + 1.26·10-s − 0.301·11-s − 0.288·12-s + 1.10·13-s + 0.534·14-s − 1.03·15-s + 1/4·16-s + 0.235·18-s + 0.894·20-s − 0.436·21-s − 0.213·22-s + 1.25·23-s − 0.204·24-s + 11/5·25-s + 0.784·26-s − 0.192·27-s + 0.377·28-s − 1.85·29-s − 0.730·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19074 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19074 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19074\)    =    \(2 \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(152.306\)
Root analytic conductor: \(12.3412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19074,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.780180882\)
\(L(\frac12)\) \(\approx\) \(5.780180882\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.63639895289975, −15.06605771716881, −14.54372052409317, −14.01179103012109, −13.40647273731484, −13.09965213164506, −12.75536317332851, −11.70083776942865, −11.40050179397304, −10.64265750601040, −10.45969460710528, −9.621690813292869, −9.088326153210178, −8.429499588932859, −7.605627291656647, −6.892893666909340, −6.246299441046354, −5.872114184583398, −5.234274335940401, −4.880665533574897, −4.019643964500830, −3.093235120498489, −2.322973150328417, −1.603583578616473, −1.015472521954458, 1.015472521954458, 1.603583578616473, 2.322973150328417, 3.093235120498489, 4.019643964500830, 4.880665533574897, 5.234274335940401, 5.872114184583398, 6.246299441046354, 6.892893666909340, 7.605627291656647, 8.429499588932859, 9.088326153210178, 9.621690813292869, 10.45969460710528, 10.64265750601040, 11.40050179397304, 11.70083776942865, 12.75536317332851, 13.09965213164506, 13.40647273731484, 14.01179103012109, 14.54372052409317, 15.06605771716881, 15.63639895289975

Graph of the $Z$-function along the critical line