| L(s)  = 1  |   − 2-s     − 4-s       − 7-s   + 3·8-s           + 2·13-s   + 14-s     − 16-s   − 2·17-s     + 4·19-s         + 6·23-s       − 2·26-s     + 28-s   + 4·29-s     + 4·31-s   − 5·32-s     + 2·34-s       + 6·37-s   − 4·38-s           − 4·43-s       − 6·46-s   + 6·47-s     + 49-s       − 2·52-s   − 6·53-s       − 3·56-s     − 4·58-s   + 8·59-s  + ⋯ | 
 
| L(s)  = 1  |   − 0.707·2-s     − 1/2·4-s       − 0.377·7-s   + 1.06·8-s           + 0.554·13-s   + 0.267·14-s     − 1/4·16-s   − 0.485·17-s     + 0.917·19-s         + 1.25·23-s       − 0.392·26-s     + 0.188·28-s   + 0.742·29-s     + 0.718·31-s   − 0.883·32-s     + 0.342·34-s       + 0.986·37-s   − 0.648·38-s           − 0.609·43-s       − 0.884·46-s   + 0.875·47-s     + 1/7·49-s       − 0.277·52-s   − 0.824·53-s       − 0.400·56-s     − 0.525·58-s   + 1.04·59-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 190575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190575 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(1.944021549\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.944021549\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 7 |  \( 1 + T \)  |    | 
 | 11 |  \( 1 \)  |    | 
| good | 2 |  \( 1 + T + p T^{2} \)  |  1.2.b  | 
 | 13 |  \( 1 - 2 T + p T^{2} \)  |  1.13.ac  | 
 | 17 |  \( 1 + 2 T + p T^{2} \)  |  1.17.c  | 
 | 19 |  \( 1 - 4 T + p T^{2} \)  |  1.19.ae  | 
 | 23 |  \( 1 - 6 T + p T^{2} \)  |  1.23.ag  | 
 | 29 |  \( 1 - 4 T + p T^{2} \)  |  1.29.ae  | 
 | 31 |  \( 1 - 4 T + p T^{2} \)  |  1.31.ae  | 
 | 37 |  \( 1 - 6 T + p T^{2} \)  |  1.37.ag  | 
 | 41 |  \( 1 + p T^{2} \)  |  1.41.a  | 
 | 43 |  \( 1 + 4 T + p T^{2} \)  |  1.43.e  | 
 | 47 |  \( 1 - 6 T + p T^{2} \)  |  1.47.ag  | 
 | 53 |  \( 1 + 6 T + p T^{2} \)  |  1.53.g  | 
 | 59 |  \( 1 - 8 T + p T^{2} \)  |  1.59.ai  | 
 | 61 |  \( 1 + p T^{2} \)  |  1.61.a  | 
 | 67 |  \( 1 + 2 T + p T^{2} \)  |  1.67.c  | 
 | 71 |  \( 1 + p T^{2} \)  |  1.71.a  | 
 | 73 |  \( 1 - 10 T + p T^{2} \)  |  1.73.ak  | 
 | 79 |  \( 1 + 8 T + p T^{2} \)  |  1.79.i  | 
 | 83 |  \( 1 - 12 T + p T^{2} \)  |  1.83.am  | 
 | 89 |  \( 1 - 10 T + p T^{2} \)  |  1.89.ak  | 
 | 97 |  \( 1 - 6 T + p T^{2} \)  |  1.97.ag  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.01810883133189, −12.88799434250805, −12.10499317988242, −11.63711819431634, −11.07876874128634, −10.75211415476260, −10.06384717430123, −9.852715464394335, −9.274186853864456, −8.761787017961484, −8.606538764926438, −7.811182852470353, −7.544615586536540, −6.899109329293960, −6.403834562889021, −5.905270617165776, −5.084491813244631, −4.868322768275223, −4.213462909797700, −3.603536092667392, −3.083916821918361, −2.430078356702189, −1.645200607031049, −0.8643204887879986, −0.6275204113055514, 
0.6275204113055514, 0.8643204887879986, 1.645200607031049, 2.430078356702189, 3.083916821918361, 3.603536092667392, 4.213462909797700, 4.868322768275223, 5.084491813244631, 5.905270617165776, 6.403834562889021, 6.899109329293960, 7.544615586536540, 7.811182852470353, 8.606538764926438, 8.761787017961484, 9.274186853864456, 9.852715464394335, 10.06384717430123, 10.75211415476260, 11.07876874128634, 11.63711819431634, 12.10499317988242, 12.88799434250805, 13.01810883133189