Properties

Label 2-190400-1.1-c1-0-109
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 7-s + 9-s − 4·11-s − 4·13-s + 17-s − 6·19-s − 2·21-s + 4·27-s − 6·29-s − 4·31-s + 8·33-s − 10·37-s + 8·39-s + 6·41-s + 4·47-s + 49-s − 2·51-s + 14·53-s + 12·57-s − 6·59-s + 12·61-s + 63-s − 4·67-s + 8·71-s − 2·73-s − 4·77-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 1.10·13-s + 0.242·17-s − 1.37·19-s − 0.436·21-s + 0.769·27-s − 1.11·29-s − 0.718·31-s + 1.39·33-s − 1.64·37-s + 1.28·39-s + 0.937·41-s + 0.583·47-s + 1/7·49-s − 0.280·51-s + 1.92·53-s + 1.58·57-s − 0.781·59-s + 1.53·61-s + 0.125·63-s − 0.488·67-s + 0.949·71-s − 0.234·73-s − 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.37592946256359, −12.98534037364051, −12.59018245980382, −12.05701906691474, −11.85448681393270, −11.06852066975061, −10.78272840638904, −10.50766294251171, −9.976794386865682, −9.410686995604592, −8.743786896128740, −8.380746879235031, −7.721105480832710, −7.271464288657213, −6.892011471454383, −6.235091220149818, −5.622209613399387, −5.263490218530630, −5.073200519345249, −4.225495434138696, −3.887778364273584, −2.920998916651686, −2.368889003711458, −1.925099202768793, −0.9912016526888413, 0, 0, 0.9912016526888413, 1.925099202768793, 2.368889003711458, 2.920998916651686, 3.887778364273584, 4.225495434138696, 5.073200519345249, 5.263490218530630, 5.622209613399387, 6.235091220149818, 6.892011471454383, 7.271464288657213, 7.721105480832710, 8.380746879235031, 8.743786896128740, 9.410686995604592, 9.976794386865682, 10.50766294251171, 10.78272840638904, 11.06852066975061, 11.85448681393270, 12.05701906691474, 12.59018245980382, 12.98534037364051, 13.37592946256359

Graph of the $Z$-function along the critical line