Properties

Label 2-187200-1.1-c1-0-34
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 2·11-s − 13-s − 6·17-s − 4·19-s + 4·23-s − 6·29-s + 8·31-s − 10·37-s + 4·41-s − 4·43-s − 6·47-s + 9·49-s − 6·53-s − 6·59-s + 6·61-s − 10·71-s + 2·73-s − 8·77-s + 10·83-s − 8·89-s − 4·91-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.603·11-s − 0.277·13-s − 1.45·17-s − 0.917·19-s + 0.834·23-s − 1.11·29-s + 1.43·31-s − 1.64·37-s + 0.624·41-s − 0.609·43-s − 0.875·47-s + 9/7·49-s − 0.824·53-s − 0.781·59-s + 0.768·61-s − 1.18·71-s + 0.234·73-s − 0.911·77-s + 1.09·83-s − 0.847·89-s − 0.419·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.259054946\)
\(L(\frac12)\) \(\approx\) \(1.259054946\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20822062746766, −12.73999485583376, −11.99655554433225, −11.80886765168895, −11.01826244929598, −10.88840376625418, −10.56913554390578, −9.781273570070177, −9.294433888938610, −8.695659174814131, −8.355324294596180, −7.968660028508102, −7.411735102801696, −6.792070560673466, −6.504261464967337, −5.675929644000214, −5.174208399714609, −4.736105884225135, −4.397397238243156, −3.761600008715965, −2.915580391065236, −2.408774464621109, −1.802979806036342, −1.378655123951677, −0.3045655119492183, 0.3045655119492183, 1.378655123951677, 1.802979806036342, 2.408774464621109, 2.915580391065236, 3.761600008715965, 4.397397238243156, 4.736105884225135, 5.174208399714609, 5.675929644000214, 6.504261464967337, 6.792070560673466, 7.411735102801696, 7.968660028508102, 8.355324294596180, 8.695659174814131, 9.294433888938610, 9.781273570070177, 10.56913554390578, 10.88840376625418, 11.01826244929598, 11.80886765168895, 11.99655554433225, 12.73999485583376, 13.20822062746766

Graph of the $Z$-function along the critical line