Properties

Label 2-18590-1.1-c1-0-9
Degree $2$
Conductor $18590$
Sign $-1$
Analytic cond. $148.441$
Root an. cond. $12.1836$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 7-s + 8-s − 2·9-s − 10-s + 11-s − 12-s − 14-s + 15-s + 16-s − 17-s − 2·18-s − 3·19-s − 20-s + 21-s + 22-s + 6·23-s − 24-s + 25-s + 5·27-s − 28-s − 29-s + 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.471·18-s − 0.688·19-s − 0.223·20-s + 0.218·21-s + 0.213·22-s + 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.962·27-s − 0.188·28-s − 0.185·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18590 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18590 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18590\)    =    \(2 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(148.441\)
Root analytic conductor: \(12.1836\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18590,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.93719778863779, −15.50246930041814, −14.89345945393793, −14.43388800838069, −13.88563158406613, −13.08523543992802, −12.86030343514522, −12.10234403333760, −11.60774155834866, −11.29319614518475, −10.60237035333413, −10.11669324521576, −9.274255303207095, −8.549445669395077, −8.201921332055129, −7.179128420303102, −6.685001064501739, −6.295402445798526, −5.469421474045243, −4.963333910151597, −4.346415732850317, −3.502030937519992, −3.001333225218146, −2.150735436435644, −1.028404909090640, 0, 1.028404909090640, 2.150735436435644, 3.001333225218146, 3.502030937519992, 4.346415732850317, 4.963333910151597, 5.469421474045243, 6.295402445798526, 6.685001064501739, 7.179128420303102, 8.201921332055129, 8.549445669395077, 9.274255303207095, 10.11669324521576, 10.60237035333413, 11.29319614518475, 11.60774155834866, 12.10234403333760, 12.86030343514522, 13.08523543992802, 13.88563158406613, 14.43388800838069, 14.89345945393793, 15.50246930041814, 15.93719778863779

Graph of the $Z$-function along the critical line