Properties

Label 2-180336-1.1-c1-0-43
Degree $2$
Conductor $180336$
Sign $-1$
Analytic cond. $1439.99$
Root an. cond. $37.9472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s + 9-s + 13-s − 7·19-s − 4·21-s − 4·23-s − 5·25-s + 27-s + 6·29-s + 6·31-s − 3·37-s + 39-s − 5·41-s + 2·43-s + 7·47-s + 9·49-s − 2·53-s − 7·57-s − 14·59-s + 6·61-s − 4·63-s − 7·67-s − 4·69-s − 8·71-s − 16·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.277·13-s − 1.60·19-s − 0.872·21-s − 0.834·23-s − 25-s + 0.192·27-s + 1.11·29-s + 1.07·31-s − 0.493·37-s + 0.160·39-s − 0.780·41-s + 0.304·43-s + 1.02·47-s + 9/7·49-s − 0.274·53-s − 0.927·57-s − 1.82·59-s + 0.768·61-s − 0.503·63-s − 0.855·67-s − 0.481·69-s − 0.949·71-s − 1.87·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180336\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1439.99\)
Root analytic conductor: \(37.9472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 180336,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54492646636336, −12.92545558897002, −12.53805252503072, −12.01804954124345, −11.77281871710424, −10.79454838035004, −10.46290743026638, −10.05531071117446, −9.684948581567559, −9.024227540129261, −8.698559721796716, −8.235766830099139, −7.629819691479965, −7.140911746257078, −6.429765768717144, −6.227906205402227, −5.862948672568000, −4.893344240215533, −4.310932977799363, −3.955858587282667, −3.251542304097889, −2.909606008198896, −2.207311067106082, −1.702250585177144, −0.6871932117399980, 0, 0.6871932117399980, 1.702250585177144, 2.207311067106082, 2.909606008198896, 3.251542304097889, 3.955858587282667, 4.310932977799363, 4.893344240215533, 5.862948672568000, 6.227906205402227, 6.429765768717144, 7.140911746257078, 7.629819691479965, 8.235766830099139, 8.698559721796716, 9.024227540129261, 9.684948581567559, 10.05531071117446, 10.46290743026638, 10.79454838035004, 11.77281871710424, 12.01804954124345, 12.53805252503072, 12.92545558897002, 13.54492646636336

Graph of the $Z$-function along the critical line