Properties

Label 2-178752-1.1-c1-0-111
Degree $2$
Conductor $178752$
Sign $-1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 2·11-s + 2·13-s + 2·15-s − 2·17-s − 19-s − 6·23-s − 25-s − 27-s + 8·31-s + 2·33-s − 6·37-s − 2·39-s + 8·43-s − 2·45-s − 6·47-s + 2·51-s + 4·55-s + 57-s + 10·61-s − 4·65-s + 4·67-s + 6·69-s − 8·71-s − 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 0.516·15-s − 0.485·17-s − 0.229·19-s − 1.25·23-s − 1/5·25-s − 0.192·27-s + 1.43·31-s + 0.348·33-s − 0.986·37-s − 0.320·39-s + 1.21·43-s − 0.298·45-s − 0.875·47-s + 0.280·51-s + 0.539·55-s + 0.132·57-s + 1.28·61-s − 0.496·65-s + 0.488·67-s + 0.722·69-s − 0.949·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29758705362763, −12.98204207590903, −12.25409841921266, −11.98275665862107, −11.60306302034866, −11.07389636669645, −10.61874996757414, −10.23586850830434, −9.706020980475505, −9.123210907464760, −8.389191676774325, −8.192622106567543, −7.693936498893061, −7.122760970372709, −6.551586946465333, −6.173659350401754, −5.537485733904894, −5.095179596216700, −4.294378068847520, −4.150654141055426, −3.497226256050126, −2.793620923486589, −2.162677908720092, −1.449390008728529, −0.6101873945346485, 0, 0.6101873945346485, 1.449390008728529, 2.162677908720092, 2.793620923486589, 3.497226256050126, 4.150654141055426, 4.294378068847520, 5.095179596216700, 5.537485733904894, 6.173659350401754, 6.551586946465333, 7.122760970372709, 7.693936498893061, 8.192622106567543, 8.389191676774325, 9.123210907464760, 9.706020980475505, 10.23586850830434, 10.61874996757414, 11.07389636669645, 11.60306302034866, 11.98275665862107, 12.25409841921266, 12.98204207590903, 13.29758705362763

Graph of the $Z$-function along the critical line