Properties

Label 2-178752-1.1-c1-0-272
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 6·11-s − 4·13-s + 19-s + 6·23-s − 5·25-s + 27-s − 6·29-s + 4·31-s − 6·33-s − 2·37-s − 4·39-s + 6·41-s − 8·43-s − 12·47-s − 6·53-s + 57-s − 12·59-s − 10·61-s − 14·67-s + 6·69-s − 12·71-s − 2·73-s − 5·75-s − 10·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.80·11-s − 1.10·13-s + 0.229·19-s + 1.25·23-s − 25-s + 0.192·27-s − 1.11·29-s + 0.718·31-s − 1.04·33-s − 0.328·37-s − 0.640·39-s + 0.937·41-s − 1.21·43-s − 1.75·47-s − 0.824·53-s + 0.132·57-s − 1.56·59-s − 1.28·61-s − 1.71·67-s + 0.722·69-s − 1.42·71-s − 0.234·73-s − 0.577·75-s − 1.12·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57710258309829, −13.12878644826374, −12.88277730872095, −12.30684732748986, −11.81755541715315, −11.18826301946653, −10.81843724200260, −10.19698697076939, −9.874926239205441, −9.434062176887033, −8.880792801264773, −8.320935401031106, −7.758582651554765, −7.508802541510614, −7.154620922039678, −6.314130298889939, −5.812953229986304, −5.185320781112643, −4.753693420333139, −4.414705336172268, −3.407022287571265, −2.989335801728863, −2.656702711140368, −1.883402327512315, −1.379520659757447, 0, 0, 1.379520659757447, 1.883402327512315, 2.656702711140368, 2.989335801728863, 3.407022287571265, 4.414705336172268, 4.753693420333139, 5.185320781112643, 5.812953229986304, 6.314130298889939, 7.154620922039678, 7.508802541510614, 7.758582651554765, 8.320935401031106, 8.880792801264773, 9.434062176887033, 9.874926239205441, 10.19698697076939, 10.81843724200260, 11.18826301946653, 11.81755541715315, 12.30684732748986, 12.88277730872095, 13.12878644826374, 13.57710258309829

Graph of the $Z$-function along the critical line