Properties

Label 2-178752-1.1-c1-0-16
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 3·11-s − 6·13-s − 15-s − 3·17-s + 19-s − 4·23-s − 4·25-s − 27-s + 10·29-s + 2·31-s + 3·33-s − 8·37-s + 6·39-s + 8·41-s − 43-s + 45-s + 3·47-s + 3·51-s + 6·53-s − 3·55-s − 57-s + 7·61-s − 6·65-s + 8·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.904·11-s − 1.66·13-s − 0.258·15-s − 0.727·17-s + 0.229·19-s − 0.834·23-s − 4/5·25-s − 0.192·27-s + 1.85·29-s + 0.359·31-s + 0.522·33-s − 1.31·37-s + 0.960·39-s + 1.24·41-s − 0.152·43-s + 0.149·45-s + 0.437·47-s + 0.420·51-s + 0.824·53-s − 0.404·55-s − 0.132·57-s + 0.896·61-s − 0.744·65-s + 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7837564092\)
\(L(\frac12)\) \(\approx\) \(0.7837564092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15079524006871, −12.55102403643197, −12.27682750809823, −11.80241953576681, −11.39363509095034, −10.61843638291023, −10.34338533052674, −9.950306224947892, −9.549431529818143, −8.941572385499926, −8.257401950141263, −7.922081146800026, −7.268500207937629, −6.879630224677085, −6.389651767454789, −5.657661283232425, −5.429454720347501, −4.765518148688046, −4.442242394543961, −3.764032658044037, −2.872292427221908, −2.384854264072437, −2.048944585893270, −1.075325093218620, −0.2806348541922004, 0.2806348541922004, 1.075325093218620, 2.048944585893270, 2.384854264072437, 2.872292427221908, 3.764032658044037, 4.442242394543961, 4.765518148688046, 5.429454720347501, 5.657661283232425, 6.389651767454789, 6.879630224677085, 7.268500207937629, 7.922081146800026, 8.257401950141263, 8.941572385499926, 9.549431529818143, 9.950306224947892, 10.34338533052674, 10.61843638291023, 11.39363509095034, 11.80241953576681, 12.27682750809823, 12.55102403643197, 13.15079524006871

Graph of the $Z$-function along the critical line