Properties

Label 178752.dh
Number of curves $2$
Conductor $178752$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 178752.dh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178752.dh do not have complex multiplication.

Modular form 178752.2.a.dh

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - 3 q^{11} - 6 q^{13} - q^{15} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 178752.dh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.dh1 178752ej2 \([0, -1, 0, -860505, -306954297]\) \(-9358714467168256/22284891\) \(-167794889040576\) \([]\) \(1584000\) \(1.9709\)  
178752.dh2 178752ej1 \([0, -1, 0, 3855, -106497]\) \(841232384/1121931\) \(-8447619854016\) \([]\) \(316800\) \(1.1662\) \(\Gamma_0(N)\)-optimal