Properties

Label 2-17856-1.1-c1-0-3
Degree $2$
Conductor $17856$
Sign $1$
Analytic cond. $142.580$
Root an. cond. $11.9407$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·13-s + 6·17-s − 4·19-s − 8·23-s − 25-s + 2·29-s − 31-s − 10·37-s + 6·41-s − 8·43-s + 8·47-s − 7·49-s − 6·53-s − 12·59-s + 6·61-s + 4·65-s + 12·67-s − 8·71-s + 10·73-s − 8·79-s + 8·83-s − 12·85-s + 6·89-s + 8·95-s + 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.554·13-s + 1.45·17-s − 0.917·19-s − 1.66·23-s − 1/5·25-s + 0.371·29-s − 0.179·31-s − 1.64·37-s + 0.937·41-s − 1.21·43-s + 1.16·47-s − 49-s − 0.824·53-s − 1.56·59-s + 0.768·61-s + 0.496·65-s + 1.46·67-s − 0.949·71-s + 1.17·73-s − 0.900·79-s + 0.878·83-s − 1.30·85-s + 0.635·89-s + 0.820·95-s + 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17856\)    =    \(2^{6} \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(142.580\)
Root analytic conductor: \(11.9407\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17856,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9141121487\)
\(L(\frac12)\) \(\approx\) \(0.9141121487\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
31 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.73315037815487, −15.44243596329670, −14.61831633489857, −14.25068071234596, −13.80925050363028, −12.83908738652050, −12.42190895755218, −11.98229703306645, −11.52102426278714, −10.77666120103153, −10.12459263316262, −9.831771003336548, −8.923231059874582, −8.330475620832627, −7.727337954724499, −7.477972471626688, −6.516985878810531, −6.009904427587417, −5.186022363609855, −4.592322904339529, −3.755251247846160, −3.432023175606139, −2.377593892796587, −1.609981061966868, −0.3970655343119076, 0.3970655343119076, 1.609981061966868, 2.377593892796587, 3.432023175606139, 3.755251247846160, 4.592322904339529, 5.186022363609855, 6.009904427587417, 6.516985878810531, 7.477972471626688, 7.727337954724499, 8.330475620832627, 8.923231059874582, 9.831771003336548, 10.12459263316262, 10.77666120103153, 11.52102426278714, 11.98229703306645, 12.42190895755218, 12.83908738652050, 13.80925050363028, 14.25068071234596, 14.61831633489857, 15.44243596329670, 15.73315037815487

Graph of the $Z$-function along the critical line