Properties

Label 2-178464-1.1-c1-0-15
Degree $2$
Conductor $178464$
Sign $1$
Analytic cond. $1425.04$
Root an. cond. $37.7497$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 9-s + 11-s + 4·19-s − 3·21-s + 6·23-s − 5·25-s + 27-s − 6·29-s + 5·31-s + 33-s − 6·37-s − 43-s − 4·47-s + 2·49-s + 6·53-s + 4·57-s + 14·59-s + 61-s − 3·63-s + 15·67-s + 6·69-s + 12·71-s − 15·73-s − 5·75-s − 3·77-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s + 1/3·9-s + 0.301·11-s + 0.917·19-s − 0.654·21-s + 1.25·23-s − 25-s + 0.192·27-s − 1.11·29-s + 0.898·31-s + 0.174·33-s − 0.986·37-s − 0.152·43-s − 0.583·47-s + 2/7·49-s + 0.824·53-s + 0.529·57-s + 1.82·59-s + 0.128·61-s − 0.377·63-s + 1.83·67-s + 0.722·69-s + 1.42·71-s − 1.75·73-s − 0.577·75-s − 0.341·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178464\)    =    \(2^{5} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1425.04\)
Root analytic conductor: \(37.7497\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.576893017\)
\(L(\frac12)\) \(\approx\) \(2.576893017\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21605100232790, −12.86106619510494, −12.24664877629161, −11.82875180928065, −11.30417499796615, −10.83139231787062, −10.10838504788047, −9.707260792702317, −9.536158525404919, −8.918281324683607, −8.418648070988512, −7.958704150032716, −7.262864733456838, −6.871756088298337, −6.599304243794962, −5.716454250102205, −5.442632588110531, −4.762616366937407, −3.988644324872205, −3.597122416336806, −3.162504229986606, −2.565321890263515, −1.938952403452053, −1.166840540077674, −0.4692216622226751, 0.4692216622226751, 1.166840540077674, 1.938952403452053, 2.565321890263515, 3.162504229986606, 3.597122416336806, 3.988644324872205, 4.762616366937407, 5.442632588110531, 5.716454250102205, 6.599304243794962, 6.871756088298337, 7.262864733456838, 7.958704150032716, 8.418648070988512, 8.918281324683607, 9.536158525404919, 9.707260792702317, 10.10838504788047, 10.83139231787062, 11.30417499796615, 11.82875180928065, 12.24664877629161, 12.86106619510494, 13.21605100232790

Graph of the $Z$-function along the critical line