| L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s − 4·11-s + 12-s − 2·13-s − 14-s + 15-s + 16-s − 2·17-s − 18-s + 4·19-s + 20-s + 21-s + 4·22-s − 8·23-s − 24-s + 25-s + 2·26-s + 27-s + 28-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.218·21-s + 0.852·22-s − 1.66·23-s − 0.204·24-s + 1/5·25-s + 0.392·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.491856788\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.491856788\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 + T \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 - T \) | |
| 7 | \( 1 - T \) | |
| 29 | \( 1 \) | |
| good | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e |
| 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i |
| 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai |
| 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c |
| 43 | \( 1 - 12 T + p T^{2} \) | 1.43.am |
| 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae |
| 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac |
| 67 | \( 1 - 12 T + p T^{2} \) | 1.67.am |
| 71 | \( 1 - 8 T + p T^{2} \) | 1.71.ai |
| 73 | \( 1 - 14 T + p T^{2} \) | 1.73.ao |
| 79 | \( 1 + p T^{2} \) | 1.79.a |
| 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am |
| 89 | \( 1 + 2 T + p T^{2} \) | 1.89.c |
| 97 | \( 1 + 10 T + p T^{2} \) | 1.97.k |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32328366009220, −12.57869204939037, −12.25046135723730, −11.82783729861671, −11.05280873631490, −10.80674744773976, −10.11941612429238, −9.865740173614149, −9.484939033730103, −8.864408788545646, −8.308341524667870, −7.951291833531719, −7.601466525092921, −7.051231056371469, −6.457986534815416, −5.876646281230090, −5.318352237691818, −4.899311715978071, −4.111652974496801, −3.663318802286009, −2.606697003828880, −2.513930515053446, −2.045913530159428, −1.099123629408161, −0.5287568742811910,
0.5287568742811910, 1.099123629408161, 2.045913530159428, 2.513930515053446, 2.606697003828880, 3.663318802286009, 4.111652974496801, 4.899311715978071, 5.318352237691818, 5.876646281230090, 6.457986534815416, 7.051231056371469, 7.601466525092921, 7.951291833531719, 8.308341524667870, 8.864408788545646, 9.484939033730103, 9.865740173614149, 10.11941612429238, 10.80674744773976, 11.05280873631490, 11.82783729861671, 12.25046135723730, 12.57869204939037, 13.32328366009220