Properties

Label 2-17600-1.1-c1-0-79
Degree $2$
Conductor $17600$
Sign $-1$
Analytic cond. $140.536$
Root an. cond. $11.8548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 11-s + 3·13-s + 4·17-s + 19-s − 3·23-s − 4·27-s − 5·29-s − 3·31-s − 2·33-s − 12·37-s + 6·39-s + 8·41-s − 5·43-s + 8·47-s − 7·49-s + 8·51-s − 10·53-s + 2·57-s − 8·59-s − 10·61-s + 14·67-s − 6·69-s − 5·71-s + 4·73-s − 8·79-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 0.301·11-s + 0.832·13-s + 0.970·17-s + 0.229·19-s − 0.625·23-s − 0.769·27-s − 0.928·29-s − 0.538·31-s − 0.348·33-s − 1.97·37-s + 0.960·39-s + 1.24·41-s − 0.762·43-s + 1.16·47-s − 49-s + 1.12·51-s − 1.37·53-s + 0.264·57-s − 1.04·59-s − 1.28·61-s + 1.71·67-s − 0.722·69-s − 0.593·71-s + 0.468·73-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17600\)    =    \(2^{6} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(140.536\)
Root analytic conductor: \(11.8548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.83777584867871, −15.63553918796968, −14.93211898446785, −14.34070073142401, −13.95509725551447, −13.60940186196324, −12.75708643745009, −12.48367171124581, −11.63519575324999, −11.04529168310686, −10.50146936958633, −9.714990221344994, −9.357190226513690, −8.646265201105130, −8.227946538332811, −7.608687237054009, −7.178922352125165, −6.153464002451589, −5.688330394346905, −4.942104971104290, −3.976864111289612, −3.450157638712218, −2.966437141975170, −2.004784107612482, −1.400585189027015, 0, 1.400585189027015, 2.004784107612482, 2.966437141975170, 3.450157638712218, 3.976864111289612, 4.942104971104290, 5.688330394346905, 6.153464002451589, 7.178922352125165, 7.608687237054009, 8.227946538332811, 8.646265201105130, 9.357190226513690, 9.714990221344994, 10.50146936958633, 11.04529168310686, 11.63519575324999, 12.48367171124581, 12.75708643745009, 13.60940186196324, 13.95509725551447, 14.34070073142401, 14.93211898446785, 15.63553918796968, 15.83777584867871

Graph of the $Z$-function along the critical line