Properties

Label 2-17472-1.1-c1-0-5
Degree $2$
Conductor $17472$
Sign $1$
Analytic cond. $139.514$
Root an. cond. $11.8116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 2·11-s + 13-s − 6·17-s − 8·19-s − 21-s + 4·23-s − 5·25-s + 27-s + 6·29-s − 4·31-s − 2·33-s + 2·37-s + 39-s + 4·43-s + 6·47-s + 49-s − 6·51-s − 6·53-s − 8·57-s + 10·59-s − 10·61-s − 63-s − 4·67-s + 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.277·13-s − 1.45·17-s − 1.83·19-s − 0.218·21-s + 0.834·23-s − 25-s + 0.192·27-s + 1.11·29-s − 0.718·31-s − 0.348·33-s + 0.328·37-s + 0.160·39-s + 0.609·43-s + 0.875·47-s + 1/7·49-s − 0.840·51-s − 0.824·53-s − 1.05·57-s + 1.30·59-s − 1.28·61-s − 0.125·63-s − 0.488·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17472\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(139.514\)
Root analytic conductor: \(11.8116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17472,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.671490309\)
\(L(\frac12)\) \(\approx\) \(1.671490309\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.70275502983901, −15.32411163543927, −14.88357655783172, −14.11849169303852, −13.61858853774333, −13.02370041784588, −12.78974311791228, −12.08672536734716, −11.20863048750578, −10.76245598847879, −10.34863046252991, −9.492141099526870, −9.026160011727662, −8.480109463989969, −7.974144183558377, −7.192344838235811, −6.585303571335687, −6.115200776631479, −5.240675278076203, −4.377034784789105, −4.058423486450418, −3.068880089202869, −2.412725720598584, −1.831871614159058, −0.5031476356854806, 0.5031476356854806, 1.831871614159058, 2.412725720598584, 3.068880089202869, 4.058423486450418, 4.377034784789105, 5.240675278076203, 6.115200776631479, 6.585303571335687, 7.192344838235811, 7.974144183558377, 8.480109463989969, 9.026160011727662, 9.492141099526870, 10.34863046252991, 10.76245598847879, 11.20863048750578, 12.08672536734716, 12.78974311791228, 13.02370041784588, 13.61858853774333, 14.11849169303852, 14.88357655783172, 15.32411163543927, 15.70275502983901

Graph of the $Z$-function along the critical line