Properties

Label 2-174240-1.1-c1-0-109
Degree $2$
Conductor $174240$
Sign $1$
Analytic cond. $1391.31$
Root an. cond. $37.3003$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 2·13-s − 6·17-s + 25-s − 4·29-s + 8·31-s + 2·35-s − 6·37-s − 6·43-s − 8·47-s − 3·49-s + 14·53-s − 4·59-s − 8·61-s + 2·65-s − 12·67-s − 12·71-s + 2·73-s + 16·79-s − 6·83-s + 6·85-s + 2·89-s + 4·91-s + 6·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 0.554·13-s − 1.45·17-s + 1/5·25-s − 0.742·29-s + 1.43·31-s + 0.338·35-s − 0.986·37-s − 0.914·43-s − 1.16·47-s − 3/7·49-s + 1.92·53-s − 0.520·59-s − 1.02·61-s + 0.248·65-s − 1.46·67-s − 1.42·71-s + 0.234·73-s + 1.80·79-s − 0.658·83-s + 0.650·85-s + 0.211·89-s + 0.419·91-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174240\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1391.31\)
Root analytic conductor: \(37.3003\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 174240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51778737334880, −13.21843709303116, −12.82237938833081, −12.12538207168657, −11.82294593376901, −11.45699787764168, −10.72532672979120, −10.37484016007377, −9.951205566584720, −9.198036113570779, −9.078101051655815, −8.350510744789961, −7.994790935398854, −7.196340535451322, −7.015084541150116, −6.324301552887496, −6.074178742437456, −5.180742549576832, −4.748557070402104, −4.286909349730204, −3.605226873712952, −3.136402568617411, −2.525258698718031, −1.937430162752152, −1.148549792969092, 0, 0, 1.148549792969092, 1.937430162752152, 2.525258698718031, 3.136402568617411, 3.605226873712952, 4.286909349730204, 4.748557070402104, 5.180742549576832, 6.074178742437456, 6.324301552887496, 7.015084541150116, 7.196340535451322, 7.994790935398854, 8.350510744789961, 9.078101051655815, 9.198036113570779, 9.951205566584720, 10.37484016007377, 10.72532672979120, 11.45699787764168, 11.82294593376901, 12.12538207168657, 12.82237938833081, 13.21843709303116, 13.51778737334880

Graph of the $Z$-function along the critical line