Properties

Label 2-132e2-1.1-c1-0-47
Degree $2$
Conductor $17424$
Sign $-1$
Analytic cond. $139.131$
Root an. cond. $11.7953$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s + 2·13-s − 2·17-s − 4·19-s − 6·23-s − 25-s + 2·29-s − 4·35-s − 2·37-s + 6·41-s + 8·43-s − 2·47-s − 3·49-s + 10·53-s + 4·59-s + 14·61-s + 4·65-s + 4·67-s − 6·71-s + 8·73-s + 2·79-s + 12·83-s − 4·85-s − 8·89-s − 4·91-s − 8·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s + 0.554·13-s − 0.485·17-s − 0.917·19-s − 1.25·23-s − 1/5·25-s + 0.371·29-s − 0.676·35-s − 0.328·37-s + 0.937·41-s + 1.21·43-s − 0.291·47-s − 3/7·49-s + 1.37·53-s + 0.520·59-s + 1.79·61-s + 0.496·65-s + 0.488·67-s − 0.712·71-s + 0.936·73-s + 0.225·79-s + 1.31·83-s − 0.433·85-s − 0.847·89-s − 0.419·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17424 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17424 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17424\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(139.131\)
Root analytic conductor: \(11.7953\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17424,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.04634715817292, −15.78057420982180, −14.98070884688639, −14.39941994815040, −13.85482985003301, −13.35515314286933, −12.92751330508770, −12.35725116992071, −11.72281894599968, −10.96900284508357, −10.49228209915687, −9.856727002732818, −9.500183713280355, −8.764253750808926, −8.288340348981413, −7.503699979463203, −6.654615045497582, −6.294285390964914, −5.768118078461639, −5.083139853085300, −4.040299765356000, −3.762476082050356, −2.521346712570419, −2.223285709251439, −1.148309353306660, 0, 1.148309353306660, 2.223285709251439, 2.521346712570419, 3.762476082050356, 4.040299765356000, 5.083139853085300, 5.768118078461639, 6.294285390964914, 6.654615045497582, 7.503699979463203, 8.288340348981413, 8.764253750808926, 9.500183713280355, 9.856727002732818, 10.49228209915687, 10.96900284508357, 11.72281894599968, 12.35725116992071, 12.92751330508770, 13.35515314286933, 13.85482985003301, 14.39941994815040, 14.98070884688639, 15.78057420982180, 16.04634715817292

Graph of the $Z$-function along the critical line