Properties

Label 2-1725-1.1-c1-0-35
Degree $2$
Conductor $1725$
Sign $-1$
Analytic cond. $13.7741$
Root an. cond. $3.71136$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 3·7-s + 9-s + 2·11-s + 2·12-s + 3·13-s + 4·16-s + 19-s + 3·21-s − 23-s − 27-s + 6·28-s + 31-s − 2·33-s − 2·36-s − 6·37-s − 3·39-s + 4·41-s + 5·43-s − 4·44-s − 10·47-s − 4·48-s + 2·49-s − 6·52-s − 4·53-s − 57-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 1.13·7-s + 1/3·9-s + 0.603·11-s + 0.577·12-s + 0.832·13-s + 16-s + 0.229·19-s + 0.654·21-s − 0.208·23-s − 0.192·27-s + 1.13·28-s + 0.179·31-s − 0.348·33-s − 1/3·36-s − 0.986·37-s − 0.480·39-s + 0.624·41-s + 0.762·43-s − 0.603·44-s − 1.45·47-s − 0.577·48-s + 2/7·49-s − 0.832·52-s − 0.549·53-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1725\)    =    \(3 \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(13.7741\)
Root analytic conductor: \(3.71136\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
23 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - T + p T^{2} \) 1.19.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.070923600860846590016948253811, −8.294724833972019336232188362245, −7.24625628736045120036518613143, −6.31568589834864421198558318677, −5.80737232480115415534956781209, −4.75927499384694056830484894059, −3.89876603085030278002719431366, −3.15525744730468461603496260385, −1.31675359847467968155467130609, 0, 1.31675359847467968155467130609, 3.15525744730468461603496260385, 3.89876603085030278002719431366, 4.75927499384694056830484894059, 5.80737232480115415534956781209, 6.31568589834864421198558318677, 7.24625628736045120036518613143, 8.294724833972019336232188362245, 9.070923600860846590016948253811

Graph of the $Z$-function along the critical line