Properties

Label 2-169065-1.1-c1-0-20
Degree $2$
Conductor $169065$
Sign $-1$
Analytic cond. $1349.99$
Root an. cond. $36.7422$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s − 4·7-s + 3·11-s + 13-s + 4·16-s − 19-s − 2·20-s − 6·23-s + 25-s + 8·28-s − 3·29-s + 8·31-s − 4·35-s + 2·37-s − 9·41-s + 8·43-s − 6·44-s − 12·47-s + 9·49-s − 2·52-s + 12·53-s + 3·55-s − 3·59-s + 5·61-s − 8·64-s + 65-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s − 1.51·7-s + 0.904·11-s + 0.277·13-s + 16-s − 0.229·19-s − 0.447·20-s − 1.25·23-s + 1/5·25-s + 1.51·28-s − 0.557·29-s + 1.43·31-s − 0.676·35-s + 0.328·37-s − 1.40·41-s + 1.21·43-s − 0.904·44-s − 1.75·47-s + 9/7·49-s − 0.277·52-s + 1.64·53-s + 0.404·55-s − 0.390·59-s + 0.640·61-s − 64-s + 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169065\)    =    \(3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1349.99\)
Root analytic conductor: \(36.7422\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50175599250418, −13.10045368116932, −12.53974396998950, −12.21504106389305, −11.68871378687923, −11.10760543977165, −10.24894685360018, −10.07276985163934, −9.676513302400942, −9.265201208512454, −8.730393661538865, −8.341712335858693, −7.774591027015692, −6.986567304736900, −6.534931843185478, −6.161110019951288, −5.685736296321041, −5.120216839997483, −4.337381250730303, −3.985465009233711, −3.480198022954554, −2.941460521083557, −2.204890297690559, −1.414142707537724, −0.7050389184604936, 0, 0.7050389184604936, 1.414142707537724, 2.204890297690559, 2.941460521083557, 3.480198022954554, 3.985465009233711, 4.337381250730303, 5.120216839997483, 5.685736296321041, 6.161110019951288, 6.534931843185478, 6.986567304736900, 7.774591027015692, 8.341712335858693, 8.730393661538865, 9.265201208512454, 9.676513302400942, 10.07276985163934, 10.24894685360018, 11.10760543977165, 11.68871378687923, 12.21504106389305, 12.53974396998950, 13.10045368116932, 13.50175599250418

Graph of the $Z$-function along the critical line