Properties

Label 2-167310-1.1-c1-0-18
Degree $2$
Conductor $167310$
Sign $1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 11-s + 14-s + 16-s − 5·19-s − 20-s − 22-s + 6·23-s + 25-s + 28-s + 7·31-s + 32-s − 35-s − 8·37-s − 5·38-s − 40-s + 6·41-s − 7·43-s − 44-s + 6·46-s − 3·47-s − 6·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s + 0.267·14-s + 1/4·16-s − 1.14·19-s − 0.223·20-s − 0.213·22-s + 1.25·23-s + 1/5·25-s + 0.188·28-s + 1.25·31-s + 0.176·32-s − 0.169·35-s − 1.31·37-s − 0.811·38-s − 0.158·40-s + 0.937·41-s − 1.06·43-s − 0.150·44-s + 0.884·46-s − 0.437·47-s − 6/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.871181563\)
\(L(\frac12)\) \(\approx\) \(2.871181563\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14799612234204, −12.85086027088679, −12.33547614621681, −11.79660741892799, −11.49032402895973, −10.84967176454875, −10.58481908846448, −10.10111314340325, −9.351824839008896, −8.878062659548785, −8.214686712118782, −8.053074589200280, −7.314937872979878, −6.819093407156542, −6.444500012937060, −5.837663928694660, −5.136864423494796, −4.823623597568468, −4.313739316691132, −3.771055145334060, −3.023500276833585, −2.755198820560159, −1.874089754087199, −1.361779424667992, −0.4256606693468600, 0.4256606693468600, 1.361779424667992, 1.874089754087199, 2.755198820560159, 3.023500276833585, 3.771055145334060, 4.313739316691132, 4.823623597568468, 5.136864423494796, 5.837663928694660, 6.444500012937060, 6.819093407156542, 7.314937872979878, 8.053074589200280, 8.214686712118782, 8.878062659548785, 9.351824839008896, 10.10111314340325, 10.58481908846448, 10.84967176454875, 11.49032402895973, 11.79660741892799, 12.33547614621681, 12.85086027088679, 13.14799612234204

Graph of the $Z$-function along the critical line