Properties

Label 2-166635-1.1-c1-0-33
Degree $2$
Conductor $166635$
Sign $-1$
Analytic cond. $1330.58$
Root an. cond. $36.4772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 5-s − 7-s − 3·8-s − 10-s + 4·11-s + 2·13-s − 14-s − 16-s − 2·17-s + 20-s + 4·22-s + 25-s + 2·26-s + 28-s − 6·29-s − 8·31-s + 5·32-s − 2·34-s + 35-s − 10·37-s + 3·40-s + 2·41-s − 4·43-s − 4·44-s + 8·47-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.447·5-s − 0.377·7-s − 1.06·8-s − 0.316·10-s + 1.20·11-s + 0.554·13-s − 0.267·14-s − 1/4·16-s − 0.485·17-s + 0.223·20-s + 0.852·22-s + 1/5·25-s + 0.392·26-s + 0.188·28-s − 1.11·29-s − 1.43·31-s + 0.883·32-s − 0.342·34-s + 0.169·35-s − 1.64·37-s + 0.474·40-s + 0.312·41-s − 0.609·43-s − 0.603·44-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166635 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166635 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(166635\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1330.58\)
Root analytic conductor: \(36.4772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 166635,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
23 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33990690844528, −13.15195019860652, −12.50905132502744, −12.17400315723191, −11.73803975047171, −11.16213583768625, −10.82259849226443, −10.10912986317711, −9.540645226534336, −9.084932043997369, −8.772836564300704, −8.377108767723588, −7.554234893883151, −7.025080256629428, −6.663412861897484, −5.991518111487427, −5.567249751086226, −5.114688352199313, −4.253257028933419, −4.063711392103728, −3.493414171011658, −3.191784335579817, −2.211909275815286, −1.589158080316110, −0.7192511120740970, 0, 0.7192511120740970, 1.589158080316110, 2.211909275815286, 3.191784335579817, 3.493414171011658, 4.063711392103728, 4.253257028933419, 5.114688352199313, 5.567249751086226, 5.991518111487427, 6.663412861897484, 7.025080256629428, 7.554234893883151, 8.377108767723588, 8.772836564300704, 9.084932043997369, 9.540645226534336, 10.10912986317711, 10.82259849226443, 11.16213583768625, 11.73803975047171, 12.17400315723191, 12.50905132502744, 13.15195019860652, 13.33990690844528

Graph of the $Z$-function along the critical line