Properties

Label 2-408e2-1.1-c1-0-26
Degree $2$
Conductor $166464$
Sign $1$
Analytic cond. $1329.22$
Root an. cond. $36.4584$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 4·7-s − 3·11-s − 2·13-s + 8·19-s + 6·23-s + 4·25-s + 3·29-s + 7·31-s − 12·35-s − 8·37-s − 6·41-s − 4·43-s − 6·47-s + 9·49-s − 9·53-s + 9·55-s − 15·59-s − 14·61-s + 6·65-s + 2·67-s − 7·73-s − 12·77-s + 79-s − 12·83-s − 8·91-s − 24·95-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.51·7-s − 0.904·11-s − 0.554·13-s + 1.83·19-s + 1.25·23-s + 4/5·25-s + 0.557·29-s + 1.25·31-s − 2.02·35-s − 1.31·37-s − 0.937·41-s − 0.609·43-s − 0.875·47-s + 9/7·49-s − 1.23·53-s + 1.21·55-s − 1.95·59-s − 1.79·61-s + 0.744·65-s + 0.244·67-s − 0.819·73-s − 1.36·77-s + 0.112·79-s − 1.31·83-s − 0.838·91-s − 2.46·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1329.22\)
Root analytic conductor: \(36.4584\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 166464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.194679296\)
\(L(\frac12)\) \(\approx\) \(1.194679296\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36978400639748, −12.56912256842974, −12.04515633859823, −11.94101758768707, −11.30395486968028, −11.07721119746315, −10.47165737409391, −10.02749646774307, −9.365135351468291, −8.773376228795720, −8.241318860901584, −7.900821894135887, −7.587738352492568, −7.121531508682600, −6.575630160995466, −5.675765716075045, −5.009891396855983, −4.878378462691267, −4.504229462736921, −3.620252287169588, −2.985361787462851, −2.815374928699214, −1.575329062089173, −1.334071311901253, −0.3273726628514030, 0.3273726628514030, 1.334071311901253, 1.575329062089173, 2.815374928699214, 2.985361787462851, 3.620252287169588, 4.504229462736921, 4.878378462691267, 5.009891396855983, 5.675765716075045, 6.575630160995466, 7.121531508682600, 7.587738352492568, 7.900821894135887, 8.241318860901584, 8.773376228795720, 9.365135351468291, 10.02749646774307, 10.47165737409391, 11.07721119746315, 11.30395486968028, 11.94101758768707, 12.04515633859823, 12.56912256842974, 13.36978400639748

Graph of the $Z$-function along the critical line