Properties

Label 2-16562-1.1-c1-0-48
Degree $2$
Conductor $16562$
Sign $1$
Analytic cond. $132.248$
Root an. cond. $11.4999$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s − 3·9-s + 10-s − 4·11-s + 16-s − 3·17-s + 3·18-s − 20-s + 4·22-s − 4·23-s − 4·25-s − 29-s + 4·31-s − 32-s + 3·34-s − 3·36-s − 3·37-s + 40-s − 9·41-s − 8·43-s − 4·44-s + 3·45-s + 4·46-s − 8·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s − 9-s + 0.316·10-s − 1.20·11-s + 1/4·16-s − 0.727·17-s + 0.707·18-s − 0.223·20-s + 0.852·22-s − 0.834·23-s − 4/5·25-s − 0.185·29-s + 0.718·31-s − 0.176·32-s + 0.514·34-s − 1/2·36-s − 0.493·37-s + 0.158·40-s − 1.40·41-s − 1.21·43-s − 0.603·44-s + 0.447·45-s + 0.589·46-s − 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16562 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16562 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16562\)    =    \(2 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(132.248\)
Root analytic conductor: \(11.4999\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 16562,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.61406423662685, −15.77569732735607, −15.54381402883572, −15.06615959919807, −14.26603550845166, −13.68025768857831, −13.24090335474356, −12.38834769913543, −11.92301691914987, −11.30003714414636, −10.96372163617308, −10.16387437296085, −9.821816527807418, −8.977646798065315, −8.361766127653985, −8.028313378962876, −7.521303760950472, −6.563435371709086, −6.194905063128782, −5.272033396468020, −4.823997288595571, −3.746343133880131, −3.092875757849823, −2.372951159438782, −1.609315477169007, 0, 0, 1.609315477169007, 2.372951159438782, 3.092875757849823, 3.746343133880131, 4.823997288595571, 5.272033396468020, 6.194905063128782, 6.563435371709086, 7.521303760950472, 8.028313378962876, 8.361766127653985, 8.977646798065315, 9.821816527807418, 10.16387437296085, 10.96372163617308, 11.30003714414636, 11.92301691914987, 12.38834769913543, 13.24090335474356, 13.68025768857831, 14.26603550845166, 15.06615959919807, 15.54381402883572, 15.77569732735607, 16.61406423662685

Graph of the $Z$-function along the critical line