Properties

Label 2-165165-1.1-c1-0-6
Degree $2$
Conductor $165165$
Sign $1$
Analytic cond. $1318.84$
Root an. cond. $36.3159$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 5-s − 6-s − 7-s + 3·8-s + 9-s + 10-s − 12-s − 13-s + 14-s − 15-s − 16-s − 6·17-s − 18-s + 20-s − 21-s + 4·23-s + 3·24-s + 25-s + 26-s + 27-s + 28-s − 6·29-s + 30-s − 4·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s + 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s − 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.223·20-s − 0.218·21-s + 0.834·23-s + 0.612·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + 0.182·30-s − 0.718·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165165 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165165\)    =    \(3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1318.84\)
Root analytic conductor: \(36.3159\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 165165,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7481865194\)
\(L(\frac12)\) \(\approx\) \(0.7481865194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19664393735172, −12.84729545527093, −12.49054171343965, −11.77371849644963, −11.13246273858134, −10.80848522751064, −10.38506916491218, −9.719213413277030, −9.289376971675433, −8.884228630656032, −8.683570983462859, −8.026998507575828, −7.407497061916628, −7.145036339200098, −6.747567789454139, −5.727513190261115, −5.436553412895853, −4.548403189964306, −4.241500752408261, −3.779718101360600, −3.077290848377846, −2.405480544346234, −1.860044014105818, −1.047301303897825, −0.3116942963846596, 0.3116942963846596, 1.047301303897825, 1.860044014105818, 2.405480544346234, 3.077290848377846, 3.779718101360600, 4.241500752408261, 4.548403189964306, 5.436553412895853, 5.727513190261115, 6.747567789454139, 7.145036339200098, 7.407497061916628, 8.026998507575828, 8.683570983462859, 8.884228630656032, 9.289376971675433, 9.719213413277030, 10.38506916491218, 10.80848522751064, 11.13246273858134, 11.77371849644963, 12.49054171343965, 12.84729545527093, 13.19664393735172

Graph of the $Z$-function along the critical line