Properties

Label 2-163800-1.1-c1-0-107
Degree $2$
Conductor $163800$
Sign $-1$
Analytic cond. $1307.94$
Root an. cond. $36.1655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 4·11-s − 13-s + 2·17-s + 4·19-s − 6·29-s − 8·31-s + 10·37-s + 6·41-s + 4·43-s − 8·47-s + 49-s + 6·53-s − 12·59-s − 2·61-s + 12·67-s + 8·71-s − 10·73-s − 4·77-s + 8·79-s + 4·83-s + 6·89-s + 91-s − 18·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.20·11-s − 0.277·13-s + 0.485·17-s + 0.917·19-s − 1.11·29-s − 1.43·31-s + 1.64·37-s + 0.937·41-s + 0.609·43-s − 1.16·47-s + 1/7·49-s + 0.824·53-s − 1.56·59-s − 0.256·61-s + 1.46·67-s + 0.949·71-s − 1.17·73-s − 0.455·77-s + 0.900·79-s + 0.439·83-s + 0.635·89-s + 0.104·91-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 163800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 163800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(163800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1307.94\)
Root analytic conductor: \(36.1655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 163800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45402077762347, −12.97725231050453, −12.54515287104034, −12.08814379377987, −11.60834850236139, −11.11290261159696, −10.80906029983924, −10.01729056992147, −9.438915141959425, −9.384674172605664, −8.927165577258299, −7.944657683181972, −7.806099333228276, −7.130145385924475, −6.740406374414319, −6.049379637018529, −5.730184150093694, −5.127130951693237, −4.487154287192477, −3.790588843185265, −3.592686905533513, −2.822017869190877, −2.205658840521406, −1.431895810053219, −0.9215479969399219, 0, 0.9215479969399219, 1.431895810053219, 2.205658840521406, 2.822017869190877, 3.592686905533513, 3.790588843185265, 4.487154287192477, 5.127130951693237, 5.730184150093694, 6.049379637018529, 6.740406374414319, 7.130145385924475, 7.806099333228276, 7.944657683181972, 8.927165577258299, 9.384674172605664, 9.438915141959425, 10.01729056992147, 10.80906029983924, 11.11290261159696, 11.60834850236139, 12.08814379377987, 12.54515287104034, 12.97725231050453, 13.45402077762347

Graph of the $Z$-function along the critical line