Properties

Label 2-162624-1.1-c1-0-25
Degree $2$
Conductor $162624$
Sign $1$
Analytic cond. $1298.55$
Root an. cond. $36.0355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 2·13-s − 4·19-s + 21-s − 6·23-s − 5·25-s − 27-s + 6·29-s + 8·31-s − 2·37-s − 2·39-s − 12·41-s − 4·43-s + 12·47-s + 49-s + 6·53-s + 4·57-s − 10·61-s − 63-s − 8·67-s + 6·69-s + 6·71-s + 10·73-s + 5·75-s + 4·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.917·19-s + 0.218·21-s − 1.25·23-s − 25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s − 0.328·37-s − 0.320·39-s − 1.87·41-s − 0.609·43-s + 1.75·47-s + 1/7·49-s + 0.824·53-s + 0.529·57-s − 1.28·61-s − 0.125·63-s − 0.977·67-s + 0.722·69-s + 0.712·71-s + 1.17·73-s + 0.577·75-s + 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162624\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1298.55\)
Root analytic conductor: \(36.0355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.019047478\)
\(L(\frac12)\) \(\approx\) \(1.019047478\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45860856419135, −12.63025114209904, −12.16993268287202, −11.97720070940539, −11.47842580583104, −10.76848105167255, −10.40380139616463, −10.05053808229669, −9.595601321017400, −8.865541226650760, −8.379389951251587, −8.087795137128879, −7.361669739739311, −6.787331919808542, −6.300543597069002, −6.047928921650866, −5.425863427490182, −4.785813551064551, −4.244977574183779, −3.813419610388346, −3.167129887210789, −2.422799894557805, −1.860757603262664, −1.124884312610490, −0.3273626574412832, 0.3273626574412832, 1.124884312610490, 1.860757603262664, 2.422799894557805, 3.167129887210789, 3.813419610388346, 4.244977574183779, 4.785813551064551, 5.425863427490182, 6.047928921650866, 6.300543597069002, 6.787331919808542, 7.361669739739311, 8.087795137128879, 8.379389951251587, 8.865541226650760, 9.595601321017400, 10.05053808229669, 10.40380139616463, 10.76848105167255, 11.47842580583104, 11.97720070940539, 12.16993268287202, 12.63025114209904, 13.45860856419135

Graph of the $Z$-function along the critical line