Properties

Label 2-162576-1.1-c1-0-1
Degree $2$
Conductor $162576$
Sign $1$
Analytic cond. $1298.17$
Root an. cond. $36.0302$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·11-s − 6·13-s + 8·19-s + 4·23-s − 25-s + 8·31-s − 2·37-s − 12·43-s − 4·47-s − 7·49-s − 6·53-s + 12·55-s + 6·59-s + 14·61-s + 12·65-s − 2·73-s − 16·79-s − 2·83-s + 12·89-s − 16·95-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.80·11-s − 1.66·13-s + 1.83·19-s + 0.834·23-s − 1/5·25-s + 1.43·31-s − 0.328·37-s − 1.82·43-s − 0.583·47-s − 49-s − 0.824·53-s + 1.61·55-s + 0.781·59-s + 1.79·61-s + 1.48·65-s − 0.234·73-s − 1.80·79-s − 0.219·83-s + 1.27·89-s − 1.64·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162576\)    =    \(2^{4} \cdot 3^{2} \cdot 1129\)
Sign: $1$
Analytic conductor: \(1298.17\)
Root analytic conductor: \(36.0302\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6260490902\)
\(L(\frac12)\) \(\approx\) \(0.6260490902\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
1129 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10580370110724, −12.93171862401459, −12.19108558079569, −11.81776076366159, −11.48322228085055, −11.02287021157637, −10.16473266140105, −9.968900390835001, −9.722280896669629, −8.851338587413714, −8.232227698295821, −7.930212813213911, −7.501906846191097, −7.076324123204092, −6.617296906712795, −5.620347656400613, −5.297381608884688, −4.716323750539348, −4.597694585230368, −3.353707935060704, −3.251853973582599, −2.600659766996702, −2.012300690260931, −1.022993899102844, −0.2586862116640704, 0.2586862116640704, 1.022993899102844, 2.012300690260931, 2.600659766996702, 3.251853973582599, 3.353707935060704, 4.597694585230368, 4.716323750539348, 5.297381608884688, 5.620347656400613, 6.617296906712795, 7.076324123204092, 7.501906846191097, 7.930212813213911, 8.232227698295821, 8.851338587413714, 9.722280896669629, 9.968900390835001, 10.16473266140105, 11.02287021157637, 11.48322228085055, 11.81776076366159, 12.19108558079569, 12.93171862401459, 13.10580370110724

Graph of the $Z$-function along the critical line