Properties

Label 2-15884-1.1-c1-0-4
Degree $2$
Conductor $15884$
Sign $-1$
Analytic cond. $126.834$
Root an. cond. $11.2620$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 2·7-s − 2·9-s − 11-s + 4·13-s + 3·15-s + 6·17-s − 2·21-s − 3·23-s + 4·25-s + 5·27-s − 5·31-s + 33-s − 6·35-s + 37-s − 4·39-s − 10·43-s + 6·45-s − 3·49-s − 6·51-s + 6·53-s + 3·55-s − 3·59-s − 4·61-s − 4·63-s − 12·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 0.755·7-s − 2/3·9-s − 0.301·11-s + 1.10·13-s + 0.774·15-s + 1.45·17-s − 0.436·21-s − 0.625·23-s + 4/5·25-s + 0.962·27-s − 0.898·31-s + 0.174·33-s − 1.01·35-s + 0.164·37-s − 0.640·39-s − 1.52·43-s + 0.894·45-s − 3/7·49-s − 0.840·51-s + 0.824·53-s + 0.404·55-s − 0.390·59-s − 0.512·61-s − 0.503·63-s − 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15884 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15884 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15884\)    =    \(2^{2} \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(126.834\)
Root analytic conductor: \(11.2620\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15884,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.28699418932186, −15.86095522155408, −15.05986097569256, −14.72345660964076, −14.15788470198542, −13.48163350874755, −12.80119058207576, −12.02532645003594, −11.76863929590854, −11.37514187950509, −10.70571848727287, −10.33888388086388, −9.381590342757092, −8.491569754188170, −8.284063515131377, −7.665444718422954, −7.134887834158253, −6.138167532740009, −5.712386141778874, −4.993792933784728, −4.371920354855901, −3.496372528288579, −3.188608157438052, −1.868393743535220, −0.9463307051707093, 0, 0.9463307051707093, 1.868393743535220, 3.188608157438052, 3.496372528288579, 4.371920354855901, 4.993792933784728, 5.712386141778874, 6.138167532740009, 7.134887834158253, 7.665444718422954, 8.284063515131377, 8.491569754188170, 9.381590342757092, 10.33888388086388, 10.70571848727287, 11.37514187950509, 11.76863929590854, 12.02532645003594, 12.80119058207576, 13.48163350874755, 14.15788470198542, 14.72345660964076, 15.05986097569256, 15.86095522155408, 16.28699418932186

Graph of the $Z$-function along the critical line