Properties

Label 2-158400-1.1-c1-0-25
Degree $2$
Conductor $158400$
Sign $1$
Analytic cond. $1264.83$
Root an. cond. $35.5644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s − 2·13-s − 6·17-s − 4·19-s + 2·29-s − 8·31-s + 2·41-s − 2·43-s − 8·47-s − 3·49-s − 8·53-s − 8·59-s − 10·61-s − 8·67-s + 12·71-s + 14·73-s + 2·77-s + 8·79-s − 6·83-s + 14·89-s − 4·91-s + 12·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s − 0.554·13-s − 1.45·17-s − 0.917·19-s + 0.371·29-s − 1.43·31-s + 0.312·41-s − 0.304·43-s − 1.16·47-s − 3/7·49-s − 1.09·53-s − 1.04·59-s − 1.28·61-s − 0.977·67-s + 1.42·71-s + 1.63·73-s + 0.227·77-s + 0.900·79-s − 0.658·83-s + 1.48·89-s − 0.419·91-s + 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1264.83\)
Root analytic conductor: \(35.5644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 158400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9938315506\)
\(L(\frac12)\) \(\approx\) \(0.9938315506\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23743330133527, −12.68825714983071, −12.52862015730018, −11.75582146026128, −11.34516572736665, −10.92241747054963, −10.61610262770916, −9.936905058052219, −9.312742132023839, −9.014304891191558, −8.510558626391773, −7.882847088518376, −7.590237794500262, −6.891138708327164, −6.354755007115961, −6.115132449891573, −5.139040553168899, −4.774618396568024, −4.471424778673393, −3.682914433307592, −3.199041388011037, −2.221847238833802, −2.029369706391614, −1.321324048005959, −0.2811878392886174, 0.2811878392886174, 1.321324048005959, 2.029369706391614, 2.221847238833802, 3.199041388011037, 3.682914433307592, 4.471424778673393, 4.774618396568024, 5.139040553168899, 6.115132449891573, 6.354755007115961, 6.891138708327164, 7.590237794500262, 7.882847088518376, 8.510558626391773, 9.014304891191558, 9.312742132023839, 9.936905058052219, 10.61610262770916, 10.92241747054963, 11.34516572736665, 11.75582146026128, 12.52862015730018, 12.68825714983071, 13.23743330133527

Graph of the $Z$-function along the critical line