Properties

Label 2-15840-1.1-c1-0-23
Degree $2$
Conductor $15840$
Sign $-1$
Analytic cond. $126.483$
Root an. cond. $11.2464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 11-s − 2·13-s + 2·17-s + 2·23-s + 25-s + 2·29-s − 4·31-s − 2·35-s − 6·37-s − 6·41-s + 6·43-s + 6·47-s − 3·49-s + 6·53-s + 55-s − 6·61-s − 2·65-s − 2·67-s + 4·71-s − 10·73-s − 2·77-s + 8·79-s − 14·83-s + 2·85-s − 10·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 0.301·11-s − 0.554·13-s + 0.485·17-s + 0.417·23-s + 1/5·25-s + 0.371·29-s − 0.718·31-s − 0.338·35-s − 0.986·37-s − 0.937·41-s + 0.914·43-s + 0.875·47-s − 3/7·49-s + 0.824·53-s + 0.134·55-s − 0.768·61-s − 0.248·65-s − 0.244·67-s + 0.474·71-s − 1.17·73-s − 0.227·77-s + 0.900·79-s − 1.53·83-s + 0.216·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15840\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(126.483\)
Root analytic conductor: \(11.2464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.36225522824477, −15.64438828502435, −15.23189639747727, −14.47537237966932, −14.10486155233238, −13.46564337049670, −12.92737738019408, −12.32037396970176, −11.98814222029171, −11.12643263709944, −10.54827839894908, −9.952136557909173, −9.534452279127191, −8.877922522823785, −8.375010308380520, −7.326928960425299, −7.103516536241197, −6.285701658930620, −5.717590236700582, −5.093838202894194, −4.310455201457120, −3.487681391835172, −2.897856440097014, −2.060677634070230, −1.144577944160745, 0, 1.144577944160745, 2.060677634070230, 2.897856440097014, 3.487681391835172, 4.310455201457120, 5.093838202894194, 5.717590236700582, 6.285701658930620, 7.103516536241197, 7.326928960425299, 8.375010308380520, 8.877922522823785, 9.534452279127191, 9.952136557909173, 10.54827839894908, 11.12643263709944, 11.98814222029171, 12.32037396970176, 12.92737738019408, 13.46564337049670, 14.10486155233238, 14.47537237966932, 15.23189639747727, 15.64438828502435, 16.36225522824477

Graph of the $Z$-function along the critical line