Properties

Label 2-1584-1.1-c1-0-14
Degree $2$
Conductor $1584$
Sign $-1$
Analytic cond. $12.6483$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·7-s + 11-s − 2·13-s + 2·17-s + 6·19-s − 4·23-s + 11·25-s − 6·29-s − 4·31-s − 8·35-s − 6·37-s − 10·41-s − 6·43-s + 8·47-s − 3·49-s − 4·55-s − 4·59-s − 6·61-s + 8·65-s − 8·67-s − 2·73-s + 2·77-s + 10·79-s − 12·83-s − 8·85-s − 4·91-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.755·7-s + 0.301·11-s − 0.554·13-s + 0.485·17-s + 1.37·19-s − 0.834·23-s + 11/5·25-s − 1.11·29-s − 0.718·31-s − 1.35·35-s − 0.986·37-s − 1.56·41-s − 0.914·43-s + 1.16·47-s − 3/7·49-s − 0.539·55-s − 0.520·59-s − 0.768·61-s + 0.992·65-s − 0.977·67-s − 0.234·73-s + 0.227·77-s + 1.12·79-s − 1.31·83-s − 0.867·85-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(12.6483\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1584,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.847930541996233473124247216175, −8.057124954523707004822208987593, −7.53251376909507826007962870225, −6.96045911731745643617967557305, −5.52630761902370115381086518039, −4.77930282088861382836755069859, −3.85624161784864461163790617342, −3.18953257582755724401307416707, −1.55587956177828296160422082958, 0, 1.55587956177828296160422082958, 3.18953257582755724401307416707, 3.85624161784864461163790617342, 4.77930282088861382836755069859, 5.52630761902370115381086518039, 6.96045911731745643617967557305, 7.53251376909507826007962870225, 8.057124954523707004822208987593, 8.847930541996233473124247216175

Graph of the $Z$-function along the critical line