Properties

Label 2-155232-1.1-c1-0-97
Degree $2$
Conductor $155232$
Sign $-1$
Analytic cond. $1239.53$
Root an. cond. $35.2070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s + 2·13-s + 4·17-s + 6·19-s + 4·23-s − 5·25-s + 2·29-s − 10·31-s − 6·37-s − 12·41-s − 12·43-s − 6·47-s + 6·53-s − 6·61-s − 4·67-s + 8·71-s − 8·73-s + 16·79-s − 2·83-s + 10·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.301·11-s + 0.554·13-s + 0.970·17-s + 1.37·19-s + 0.834·23-s − 25-s + 0.371·29-s − 1.79·31-s − 0.986·37-s − 1.87·41-s − 1.82·43-s − 0.875·47-s + 0.824·53-s − 0.768·61-s − 0.488·67-s + 0.949·71-s − 0.936·73-s + 1.80·79-s − 0.219·83-s + 1.05·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(155232\)    =    \(2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(1239.53\)
Root analytic conductor: \(35.2070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 155232,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56949686430649, −13.21931496976516, −12.56419255974749, −11.99498360288769, −11.75264624335927, −11.21688090133414, −10.66480344735900, −10.13008833358434, −9.812069828680642, −9.250618222792423, −8.660883464237994, −8.307338041178889, −7.596965324602029, −7.326808525902313, −6.753279322024236, −6.122332704526369, −5.573751436558216, −5.058052683773652, −4.835228571754620, −3.670968691411466, −3.440892170654534, −3.103617828952209, −1.986400526218117, −1.637625801044069, −0.8546633215448874, 0, 0.8546633215448874, 1.637625801044069, 1.986400526218117, 3.103617828952209, 3.440892170654534, 3.670968691411466, 4.835228571754620, 5.058052683773652, 5.573751436558216, 6.122332704526369, 6.753279322024236, 7.326808525902313, 7.596965324602029, 8.307338041178889, 8.660883464237994, 9.250618222792423, 9.812069828680642, 10.13008833358434, 10.66480344735900, 11.21688090133414, 11.75264624335927, 11.99498360288769, 12.56419255974749, 13.21931496976516, 13.56949686430649

Graph of the $Z$-function along the critical line