Properties

Label 2-152880-1.1-c1-0-158
Degree $2$
Conductor $152880$
Sign $-1$
Analytic cond. $1220.75$
Root an. cond. $34.9392$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s + 13-s − 15-s + 6·17-s + 4·23-s + 25-s − 27-s − 10·29-s − 6·37-s − 39-s − 2·41-s + 4·43-s + 45-s − 6·51-s − 6·53-s − 6·61-s + 65-s − 4·67-s − 4·69-s − 16·71-s + 2·73-s − 75-s + 81-s + 4·83-s + 6·85-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.277·13-s − 0.258·15-s + 1.45·17-s + 0.834·23-s + 1/5·25-s − 0.192·27-s − 1.85·29-s − 0.986·37-s − 0.160·39-s − 0.312·41-s + 0.609·43-s + 0.149·45-s − 0.840·51-s − 0.824·53-s − 0.768·61-s + 0.124·65-s − 0.488·67-s − 0.481·69-s − 1.89·71-s + 0.234·73-s − 0.115·75-s + 1/9·81-s + 0.439·83-s + 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152880\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1220.75\)
Root analytic conductor: \(34.9392\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45499843453145, −13.05132997614353, −12.65016283764507, −12.01424210464165, −11.82550863087479, −10.94004142882082, −10.89263176719378, −10.23277389210344, −9.781365463675214, −9.235052820543349, −8.925879920481510, −8.160764623181117, −7.631134869934494, −7.233848962057689, −6.681875150613190, −6.062461630268379, −5.549268483758257, −5.366534911212166, −4.619957701617311, −4.057694274443592, −3.278249299377836, −3.049150747609050, −1.976086701149339, −1.548411735465971, −0.8699428032983438, 0, 0.8699428032983438, 1.548411735465971, 1.976086701149339, 3.049150747609050, 3.278249299377836, 4.057694274443592, 4.619957701617311, 5.366534911212166, 5.549268483758257, 6.062461630268379, 6.681875150613190, 7.233848962057689, 7.631134869934494, 8.160764623181117, 8.925879920481510, 9.235052820543349, 9.781365463675214, 10.23277389210344, 10.89263176719378, 10.94004142882082, 11.82550863087479, 12.01424210464165, 12.65016283764507, 13.05132997614353, 13.45499843453145

Graph of the $Z$-function along the critical line