Properties

Label 2-152592-1.1-c1-0-14
Degree $2$
Conductor $152592$
Sign $1$
Analytic cond. $1218.45$
Root an. cond. $34.9063$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 3·7-s + 9-s − 11-s + 13-s − 2·15-s − 5·19-s + 3·21-s − 6·23-s − 25-s − 27-s + 8·29-s + 7·31-s + 33-s − 6·35-s + 37-s − 39-s + 5·43-s + 2·45-s + 4·47-s + 2·49-s + 12·53-s − 2·55-s + 5·57-s + 61-s − 3·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 1.13·7-s + 1/3·9-s − 0.301·11-s + 0.277·13-s − 0.516·15-s − 1.14·19-s + 0.654·21-s − 1.25·23-s − 1/5·25-s − 0.192·27-s + 1.48·29-s + 1.25·31-s + 0.174·33-s − 1.01·35-s + 0.164·37-s − 0.160·39-s + 0.762·43-s + 0.298·45-s + 0.583·47-s + 2/7·49-s + 1.64·53-s − 0.269·55-s + 0.662·57-s + 0.128·61-s − 0.377·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152592\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1218.45\)
Root analytic conductor: \(34.9063\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 152592,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.684683867\)
\(L(\frac12)\) \(\approx\) \(1.684683867\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21307685086605, −12.92593219025158, −12.40338258791840, −11.93351285017199, −11.55556025534406, −10.70792784902242, −10.38041893480176, −10.03108504364267, −9.722050451774622, −8.994246248926836, −8.602610333513193, −7.995195464492958, −7.412717461836165, −6.667245722203187, −6.324384504296812, −6.084105148330069, −5.553415364457013, −4.891264099547732, −4.253835143190338, −3.843342338133745, −3.031877775409345, −2.408530616456116, −2.037758555646160, −1.051747413642080, −0.4401688554225551, 0.4401688554225551, 1.051747413642080, 2.037758555646160, 2.408530616456116, 3.031877775409345, 3.843342338133745, 4.253835143190338, 4.891264099547732, 5.553415364457013, 6.084105148330069, 6.324384504296812, 6.667245722203187, 7.412717461836165, 7.995195464492958, 8.602610333513193, 8.994246248926836, 9.722050451774622, 10.03108504364267, 10.38041893480176, 10.70792784902242, 11.55556025534406, 11.93351285017199, 12.40338258791840, 12.92593219025158, 13.21307685086605

Graph of the $Z$-function along the critical line