Properties

Label 2-152592-1.1-c1-0-31
Degree $2$
Conductor $152592$
Sign $-1$
Analytic cond. $1218.45$
Root an. cond. $34.9063$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 7-s + 9-s − 11-s + 3·13-s + 2·15-s + 3·19-s + 21-s − 25-s − 27-s − 8·29-s − 31-s + 33-s + 2·35-s − 37-s − 3·39-s − 6·41-s + 43-s − 2·45-s + 6·47-s − 6·49-s + 2·53-s + 2·55-s − 3·57-s − 2·59-s − 11·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.832·13-s + 0.516·15-s + 0.688·19-s + 0.218·21-s − 1/5·25-s − 0.192·27-s − 1.48·29-s − 0.179·31-s + 0.174·33-s + 0.338·35-s − 0.164·37-s − 0.480·39-s − 0.937·41-s + 0.152·43-s − 0.298·45-s + 0.875·47-s − 6/7·49-s + 0.274·53-s + 0.269·55-s − 0.397·57-s − 0.260·59-s − 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152592\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1218.45\)
Root analytic conductor: \(34.9063\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42895754528020, −13.20828753345479, −12.44084441822015, −12.07630597869482, −11.73450050844638, −11.17209826278439, −10.74162054138866, −10.45624702234646, −9.623830924251596, −9.327927317927727, −8.774505668575409, −8.065510821914754, −7.731377747091102, −7.275719441918218, −6.703589822816881, −6.133032184796366, −5.695134399138804, −5.126045755620875, −4.593188201341747, −3.860421873705296, −3.568512985220943, −3.032598379223211, −2.101236715479075, −1.473009705827199, −0.6482319874547514, 0, 0.6482319874547514, 1.473009705827199, 2.101236715479075, 3.032598379223211, 3.568512985220943, 3.860421873705296, 4.593188201341747, 5.126045755620875, 5.695134399138804, 6.133032184796366, 6.703589822816881, 7.275719441918218, 7.731377747091102, 8.065510821914754, 8.774505668575409, 9.327927317927727, 9.623830924251596, 10.45624702234646, 10.74162054138866, 11.17209826278439, 11.73450050844638, 12.07630597869482, 12.44084441822015, 13.20828753345479, 13.42895754528020

Graph of the $Z$-function along the critical line