Properties

Label 2-15162-1.1-c1-0-4
Degree $2$
Conductor $15162$
Sign $1$
Analytic cond. $121.069$
Root an. cond. $11.0031$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s + 12-s + 5·13-s + 14-s − 15-s + 16-s + 2·17-s − 18-s − 20-s − 21-s + 5·23-s − 24-s − 4·25-s − 5·26-s + 27-s − 28-s + 8·29-s + 30-s − 2·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 1.38·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.223·20-s − 0.218·21-s + 1.04·23-s − 0.204·24-s − 4/5·25-s − 0.980·26-s + 0.192·27-s − 0.188·28-s + 1.48·29-s + 0.182·30-s − 0.359·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15162\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(121.069\)
Root analytic conductor: \(11.0031\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15162,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.862188015\)
\(L(\frac12)\) \(\approx\) \(1.862188015\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.99928867972156, −15.42951803396648, −15.30529955561836, −14.32288584046715, −13.89246798637964, −13.23824498922334, −12.73592100958144, −11.96554787365097, −11.54223710825058, −10.83347861221070, −10.25567111980846, −9.825619975453337, −8.844282292513775, −8.764227844992817, −8.060110129814281, −7.459920078007158, −6.789673404122352, −6.268273590927155, −5.458094574433879, −4.605402459417623, −3.567871138208159, −3.401649212449343, −2.416461671524998, −1.478666928619803, −0.6819134420982941, 0.6819134420982941, 1.478666928619803, 2.416461671524998, 3.401649212449343, 3.567871138208159, 4.605402459417623, 5.458094574433879, 6.268273590927155, 6.789673404122352, 7.459920078007158, 8.060110129814281, 8.764227844992817, 8.844282292513775, 9.825619975453337, 10.25567111980846, 10.83347861221070, 11.54223710825058, 11.96554787365097, 12.73592100958144, 13.23824498922334, 13.89246798637964, 14.32288584046715, 15.30529955561836, 15.42951803396648, 15.99928867972156

Graph of the $Z$-function along the critical line