Properties

Label 2-15075-1.1-c1-0-11
Degree $2$
Conductor $15075$
Sign $-1$
Analytic cond. $120.374$
Root an. cond. $10.9715$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s − 4·13-s − 16-s − 4·17-s + 4·19-s + 8·23-s − 4·26-s + 2·29-s + 2·31-s + 5·32-s − 4·34-s − 6·37-s + 4·38-s − 6·41-s + 8·46-s + 12·47-s − 7·49-s + 4·52-s − 2·53-s + 2·58-s + 6·59-s + 14·61-s + 2·62-s + 7·64-s + 67-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1.10·13-s − 1/4·16-s − 0.970·17-s + 0.917·19-s + 1.66·23-s − 0.784·26-s + 0.371·29-s + 0.359·31-s + 0.883·32-s − 0.685·34-s − 0.986·37-s + 0.648·38-s − 0.937·41-s + 1.17·46-s + 1.75·47-s − 49-s + 0.554·52-s − 0.274·53-s + 0.262·58-s + 0.781·59-s + 1.79·61-s + 0.254·62-s + 7/8·64-s + 0.122·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15075\)    =    \(3^{2} \cdot 5^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(120.374\)
Root analytic conductor: \(10.9715\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15075,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
67 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.14367833437343, −15.61179162558372, −15.14520194901889, −14.51690559101424, −14.17232359540222, −13.47258999645661, −13.04100785291285, −12.59553901310820, −11.77558394674380, −11.60945034651482, −10.66225219921205, −10.01115092992529, −9.516278150859875, −8.727296261582350, −8.568718161522289, −7.369246176992802, −7.067712870518372, −6.267909466828094, −5.457353664478093, −4.946794347590069, −4.538186550493084, −3.644108460962019, −2.985130612861974, −2.322655443963211, −1.060772533613975, 0, 1.060772533613975, 2.322655443963211, 2.985130612861974, 3.644108460962019, 4.538186550493084, 4.946794347590069, 5.457353664478093, 6.267909466828094, 7.067712870518372, 7.369246176992802, 8.568718161522289, 8.727296261582350, 9.516278150859875, 10.01115092992529, 10.66225219921205, 11.60945034651482, 11.77558394674380, 12.59553901310820, 13.04100785291285, 13.47258999645661, 14.17232359540222, 14.51690559101424, 15.14520194901889, 15.61179162558372, 16.14367833437343

Graph of the $Z$-function along the critical line