Properties

Label 2-14976-1.1-c1-0-30
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 13-s + 7·17-s − 6·19-s − 2·23-s − 4·25-s − 4·29-s − 8·31-s + 35-s + 3·37-s − 6·41-s + 7·43-s + 3·47-s − 6·49-s + 6·53-s + 4·59-s + 10·61-s + 65-s − 14·67-s + 71-s + 4·73-s − 16·79-s − 4·83-s + 7·85-s + 2·89-s + 91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 0.277·13-s + 1.69·17-s − 1.37·19-s − 0.417·23-s − 4/5·25-s − 0.742·29-s − 1.43·31-s + 0.169·35-s + 0.493·37-s − 0.937·41-s + 1.06·43-s + 0.437·47-s − 6/7·49-s + 0.824·53-s + 0.520·59-s + 1.28·61-s + 0.124·65-s − 1.71·67-s + 0.118·71-s + 0.468·73-s − 1.80·79-s − 0.439·83-s + 0.759·85-s + 0.211·89-s + 0.104·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.35520188361727, −15.90813927082118, −14.95244850076918, −14.74141897059784, −14.21040639701998, −13.53109563657570, −12.99359729167260, −12.47175058307134, −11.84412292493863, −11.25323328862359, −10.63134689699818, −10.09406940442275, −9.551724046304637, −8.882142923504258, −8.235091741708999, −7.694672191533670, −7.076139222157475, −6.239785701291641, −5.626411083078478, −5.292434543633167, −4.142836704362079, −3.800445870453489, −2.788391036271374, −1.953445163530711, −1.309429710216224, 0, 1.309429710216224, 1.953445163530711, 2.788391036271374, 3.800445870453489, 4.142836704362079, 5.292434543633167, 5.626411083078478, 6.239785701291641, 7.076139222157475, 7.694672191533670, 8.235091741708999, 8.882142923504258, 9.551724046304637, 10.09406940442275, 10.63134689699818, 11.25323328862359, 11.84412292493863, 12.47175058307134, 12.99359729167260, 13.53109563657570, 14.21040639701998, 14.74141897059784, 14.95244850076918, 15.90813927082118, 16.35520188361727

Graph of the $Z$-function along the critical line